An introduction to algal phylogeny and phylogenetic methods

  • Chapter
Origins of Algae and their Plastids

Part of the book series: Plant Systematics and Evolution ((SYSTEMATICS,volume 11))

Abstract

The algae are an assemblage of morphologically diverse, photosynthetic protists that are ubiquitous in distribution. The understanding of algal phylogeny has been revolutionized with molecular evolutionary methods. These analyses have shown that the algae are of a polyphyletic origin and diverge nearly simultaneously from each other in the crown group radiation (except euglenophytes). An interesting perspective on algal origin is gained by the analysis of plastid origin because many plastids (e.g., in cryptophytes, dinoflagellates, chlorarachniophytes, and euglenophytes) have arisen multiple, independent times through secondary endosymbioses. This chapter is an introduction to algal phylogeny and to the most common methods used in the construction of evolutionary trees. The subsequent 13 chapters in this book deal with specific aspects of the phylogeny of cyanobacteria (the primary source of the algal plastid), plastids and all the major algal lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baldauf, S. L., Palmer, J. D., 1993: Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. — Proc. Natl. Acad. Sci. USA 90: 11558–11562.

    Article  PubMed  CAS  Google Scholar 

  • Bandelt, H. J., Dress, A. W. M., 1994: Splits Tree V1.0 — Department of Mathematics, University of Bielefeld.

    Google Scholar 

  • Berry, V., Gascuel, O., 1996: On the interpretation of bootstrap trees: appropriate threshold of clade selection and induced gain. — Molec. Biol. Evol. 13: 999–1011.

    Article  CAS  Google Scholar 

  • Bhattacharya, D., 1996: Analysis of the distribution of bootstrap tree lengths using the maximum parsimony method. — Molec. Phyl. Evol. 6: 339–350.

    Article  CAS  Google Scholar 

  • -Medlin, L., 1995: The phylogeny of plastids: a review based on comparisons of small subunit ribosomal RNA coding regions. — J. Phycol. 31: 489–498.

    Google Scholar 

  • -Ehlting, J., 1995: Actin coding regions: gene family evolution and use as a phylogenetic marker. — Arch. Protistenk. 145: 155–164.

    Google Scholar 

  • -Weber, K., 1997: The actin gene of the glaucocystophyte Cyanophora paradoxa: analysis of the coding region and introns and an actin phylogeny of eukaryotes. — Curr. Genet.

    Google Scholar 

  • Bold, H. C., Wynne, M. J., 1985: Introduction to the algae, structure and reproduction. 2nd edn. — Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Cavalier-Smith, T., 1982: The origins of plastids. — Biol. J. Linn. Soc. 17: 289–306.

    Article  Google Scholar 

  • -1993: Kingdom Protozoa and its 18 phyla. — Microbiol. Rev. 57: 953–994.

    PubMed  CAS  Google Scholar 

  • Delwiche, C. F., Kuhsel, M., Palmer, J. D., 1995: Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. — Molec. Phyl. Evol. 4: 110–128.

    Article  CAS  Google Scholar 

  • Donoghue, M. J., Olmstead, R. G., Smith, J. F., Palmer, J. D., 1992: Phylogenetic relationships of Dipsacales based on rbcL sequences. — Ann. Missouri Bot. Gard. 79: 333–345.

    Article  Google Scholar 

  • Doolittle, R. F., Feng, D.-F., Tsang, S., Cho, G., Little, E., 1996: Determining divergence times of the major kingdoms of living organisms with a protein clock. — Science 271: 470–477.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, S. E., Turner, S., 1991: Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. — J. Molec. Evol. 33: 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Dover, G. A., 1982: Molecular drive: a cohesive mode of species evolution. — Nature 299: 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Efron, B., Halloran, E., Holmes, S., 1996: Bootstrap confidence levels for phylogenetic trees. — Proc. Natl. Acad. Sci. USA 93: 7085–7090.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J., 1981: Evolutionary trees from DNA sequences: a maximum likelihood approach. — J. Molec. Evol. 17: 368–376.

    Article  PubMed  CAS  Google Scholar 

  • -1985: Confidence limits on phylogenies: an approach using the bootstrap. — Evolution 39: 783–791.

    Article  Google Scholar 

  • -1988: Phylogenies from molecular sequences: inference and reliability. — Annu. Rev. Genet. 22: 521–565.

    Article  PubMed  CAS  Google Scholar 

  • -1993: PHYLIP manual, version 3.5c. — University of Washington: Department of Genetics.

    Google Scholar 

  • -Kishino, H., 1993: Is there something wrong with the bootstrap on phylogenies? A reply to Hillis and Bull. — Syst. Biol. 42: 193–200.

    Google Scholar 

  • Fitch, W. M., Margoliash, E., 1967: Construction of phylogenetic trees. A method based on mutation distances as estimated from cytochrome c sequences is of general applicability. — Science 155: 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Freshwater, D. W., Frederiq, S., Butler, B. S., Hommersand, M. H., Chase, M. W., 1994: A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. — Proc. Natl. Acad. Sci. USA 91: 7281–7285.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, S., 1993: The evolution of algal chloroplasts. In Lewin, R. A., (Ed.): Origins of plastids, pp. 107–121. — New York: Chapman & Hall.

    Chapter  Google Scholar 

  • Gupta, R. S., Golding, G. B., 1993: Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria and eukaryotes. — J. Molec. Evol. 37: 573–582.

    Article  PubMed  CAS  Google Scholar 

  • Hallick, R. B., Hong, L., Drager, R. G., Favreau, M. R., Monfort, A., Orsat, B., Spielmann, A., Stutz, E., 1993: Complete sequence of Euglena gracilis chloroplast DNA. — Nucl. Acids Res. 21: 3537–3544.

    Article  PubMed  CAS  Google Scholar 

  • Hillis, D. M., Bull, J. J., 1993: An empirical test of bootstrap** as a method for assessing confidence in phylogenetic analysis. — Syst. Biol 42: 182–192.

    Google Scholar 

  • -Moritz, C., Mable, B. K., 1996: Molecular systematics. 2nd edn. — Sunderland: Sinauer.

    Google Scholar 

  • Iwabe, N., Kuma, K.-I-., Hasegawa, M., Osawa, S., Miyata, T., 1989: Evolutionary relationships of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. — Proc. Natl. Acad. Sci. USA 86: 9355–9359.

    Article  PubMed  CAS  Google Scholar 

  • **, L., Nei, M., 1990: Limitations of the evolutionary parsimony method of phylogenetic analysis. — Molec. Biol. Evol. 7: 82–102.

    PubMed  CAS  Google Scholar 

  • Jukes, T. H., Cantor, C. R., 1969: Evolution of protein molecules. — In Munro, H. N., (Ed.): Mammalian protein metabolism, pp. 21–132. — New York: Academic Press.

    Google Scholar 

  • Keeling, P. J., Doolittle, W. F., 1996: Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. — Molec. Biol. Evol. 13: 1297–1305.

    Article  PubMed  CAS  Google Scholar 

  • Kies, 1974: Elektronenmikroskopische Untersuchungen an Paulinella chromatophora Lauterborn, einer ThekamÖbe mit blaugrünen Endosymbionten Cyanellen. — Protoplasma 80: 69–89.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1980: A simple method for estimating evolutionary rates of base substitution through comparative studies of sequence evolution. — J. Molec. Evol. 16: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kishino, H., Hasegawa, M., 1989: Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order of the Hominoidea. — J. Molec. Evol. 29: 170–179.

    Article  PubMed  CAS  Google Scholar 

  • Kowallik, K. V., Stoebe, B., Schaffran, I., Freier, U., 1995: The chloroplast genome of a chlorophyll a + c containing alga, Odontella sinensis. — Pl. Molec. Reporter 13: 336–342.

    Article  CAS  Google Scholar 

  • Kraft, G. T., 1981: Rhodophyta: morphology and classification. — In Lobban, C. S., Wynne, M. J., (Eds): The biology of seaweeds, pp. 6–51. — Oxford: Blackwell.

    Google Scholar 

  • Kumar, S., Rzhetsky, A., 1996: Evolutionary relationships of eukaryotic kingdoms. — J. Molec. Evol. 42: 183–193.

    Article  PubMed  CAS  Google Scholar 

  • -Tamura, K., Nei, M., 1994: MEGA: tmolecular evolutionary genetics analysis software for microcomputers. CABIOS 10: 189–191.

    PubMed  CAS  Google Scholar 

  • Li, W.-H., Graur, D., 1991: Fundamentals of molecular evolution. — Sunderland: Sinauer.

    Google Scholar 

  • Liaud, M.-F., Valentin, C., Martin, W., Bouget, F.-Y., Kloareg, B., Cerff, R., 1994: The evolutionary origin of red algae as deduced from the nuclear genes encoding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases from Chondrus crispus. — J. Molec. Evol. 38: 319–327.

    Article  PubMed  CAS  Google Scholar 

  • Lockhart, R J., Steel, M. A., Hendy, M. D., Penny, D., 1994: Recovering evolutionary trees under a more realistic model of sequence evolution. — Molec. Biol. Evol. 11: 605–612.

    PubMed  CAS  Google Scholar 

  • Löffelhardt, W., Stirewalt, V. L., Michalowski, C. B., Annarella, M., Farley, J.Y., Schluchter, W. M., Chung, S., Neumann-Spallart, C., Steiner, J. M., Jakowitsch, J., Bohnert, H. J., Bryant, D.A., 1996: The complete sequence of the cyanelle genome from Cyanophora paradoxal the genetic complexity of a primitive plastid. In Schenk, H. E. A., (Ed.): Endocytobiology VI — Heidelberg: Springer (in press).

    Google Scholar 

  • Loiseaux-de-Göer, S., 1994: Plastid lineages. — In Round, F. E., Chapman, D. J., (Eds): Progress in phycological research 10, pp. 137–177. — Bristol: Biopress.

    Google Scholar 

  • Maddison, W. P., Maddison, D. R., 1992: “MacClade: analysis of phylogeny and character evolution, v. 3, Sunderland: Sinauer.

    Google Scholar 

  • Maidak, B. L., Larsen, N., McCaughey, M. J., Overbeek, R., Olsen, G. J., Fogel, K., Blandy, J., Woese, C. R., 1994: The ribosomal database project. — Nucl. Acids Res. 22: 3485–3487.

    Article  PubMed  CAS  Google Scholar 

  • Margulis, L., 1981: Symbiosis in cell evolution. — Chicago: Freeman.

    Google Scholar 

  • Martin, W., Somerville, C. C., Loiseaux-de Goer, S., 1992: Molecular phylogenies of plastid origins and algal evolution. — J. Molec. Evol. 35: 385–404.

    Article  CAS  Google Scholar 

  • McCutchan, T. F, Dela Cruz, V. F., Lal, A. A., Gunderson, J. H., Elwood, H. J., Sogin, M. L., 1988: Primary sequences of two small subunit ribosomal RNA genes from Plasmodium falciparum. — Molec. Biochem. Parasitol. 28: 63–68.

    Article  CAS  Google Scholar 

  • Medlin, L., Elwood, H. J., Stickel, S., Sogin, M. L., 1988: The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. — Gene 71: 491–499.

    Article  PubMed  CAS  Google Scholar 

  • Mereschkowsky, C., 1905: Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. — Biol. Zentralbl. 25: 593–604.

    Google Scholar 

  • -1910: Theorien der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre der Entstehung der Organismen. — Biol. Zentralbl. 30: 278–303.

    Google Scholar 

  • Moestrup, Ø., 1978: On the phylogenetic validity of the flagellar apparatus in green algae and other chlorophyll a and b containing plants. — BioSystems 10: 117–144.

    Article  PubMed  CAS  Google Scholar 

  • Morden, C. W., Delwiche, C. F., Kuhsel, M., Palmer, J. D., 1992: Gene phylogenies and the endosymbiotic origin of plastids. — BioSystems 28: 75–90.

    Article  PubMed  CAS  Google Scholar 

  • Nakaya, A., Yamamoto, K., Yonezawa, A., 1995: RNA secondary structure prediction using highly parallel computers. — CABIOS 11: 685–692.

    PubMed  CAS  Google Scholar 

  • O’Kelly, C. J., 1992: Flagellar apparatus Architecture and the phylogeny of “green” algae: chlorophytes, euglenoids, glaucophytes. — In Menzel, D., (Ed.): The cytoskeleton of the algae, pp. 315–345. — Boca Raton: CRC Press.

    Google Scholar 

  • Olsen, G. J., Matsuda, H., Hagstrom, R., Overbeek, R., 1994: fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. CABIOS 10: 41–48.

    PubMed  CAS  Google Scholar 

  • Ottmann, T., Widmayer, P., 1993: Algorithmen und Datenstrukturen. — Mannheim: BI Wissenschaftsverlag.

    Google Scholar 

  • Palmer, J. D., Delwiche, C. F., 1996: Second-hand chloroplasts and the case of the disappearing nucleus. — Proc. Natl. Acad. Sci. USA 93: 7432–7435.

    Article  PubMed  CAS  Google Scholar 

  • Rannala, B., Yang, Z., 1996: Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. — J. Molec. Evol. 43: 304–311.

    Article  PubMed  CAS  Google Scholar 

  • Raven, P. H., 1970: A multiple origin of plastids and mitochondria. — Science 169: 641–649.

    Article  PubMed  CAS  Google Scholar 

  • Reith, M., Munholland, J., 1995: Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. — Pl. Molec. Biol. Reporter 13: 332–335.

    Google Scholar 

  • Rzhetsky, A., 1995: Estimating substitution rates in ribosomal RNA genes. — Genetics 141: 771–783.

    PubMed  CAS  Google Scholar 

  • Saitou, N., Nei, M., 1987: The neighbor-joining method: a new method for reconstructing phylogenetic trees. — Molec. Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Schlegel, M., 1994: Molecular phylogeny of eukaryotes. — TREE 9: 330–335.

    PubMed  CAS  Google Scholar 

  • Scholin, C. A., Anderson, D. M., Sogin, M. L., 1993: Two distinct small-subunit ribosomal RNA genes in the North American toxic dinoflagellate Alexandrium fundyense Dinophyceae. — J. Phycol. 29: 209–216.

    Article  CAS  Google Scholar 

  • Sitnikova, T., 1996: Bootstrap method of interior-branch test for phylogenetic trees. — Molec. Biol. Evol. 13: 605–611.

    Article  PubMed  CAS  Google Scholar 

  • Sogin, M. L., Gunderson, G. J., Elwood, H. J., Alonso, R. A., Peattie, D. A., 1989: Phylogenetic meaning of the kingom concept: an unusual ribosomal RNA from Giardia lamblia. — Science 243: 75–77.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, K. D., Mattox, K. R., 1975: Comparative cytology, evolution, and classification of the green algae with some considerations of the origin of the organisms with chlorophylls a and b. — Bot. Rev. 41: 104–145.

    Article  Google Scholar 

  • Strimmer, K., Von Haeseler, A., 1996: Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. — Molec. Biol. Evol. 13: 964–969.

    Article  CAS  Google Scholar 

  • Swofford, D. L., 1993: PAUP: phylogenetic analysis using parsimony, v. 3.1.1. — Washington, D. C.: Smithsonian Institution.

    Google Scholar 

  • -Olsen, G. J., 1990: Phylogeny reconstruction. — In Hillis, D. M., Moritz, C., (Eds): Molecular systematics, pp. 411–501. — Sunderland: Sinauer.

    Google Scholar 

  • -Waddell, P. J., Hillis, D. H., 1996: Phylogenetic inference. In Hillis, D. M., Moritz, C., Mable, B. K., (Eds): Molecular systematics, pp. 407–425, 2nd edn. — Sunderland: Sinauer.

    Google Scholar 

  • Taylor, F. J. R., 1976: Flagellate phylogeny: a study in conflicts. — J. Protozool. 23: 28–40.

    Google Scholar 

  • Vande Peer, Y., De Wachter, R., 1993: TREECON: a software package for the construction and drawing of evolutionary trees. — CABIOS 9: 177–182.

    CAS  Google Scholar 

  • -De RIJK, P., DE WACHTER, R., 1996a: SSU rRNA database. Department of Biochemistry, University of Antwerpen http.//rrna.uia.ac.be/rrna/ssuform.html#Eukarya.

    Google Scholar 

  • Van der Auwera, G., De Wachter, R., 1996b: The evolution of stramenopiles and alveolates as derived by “Substitution Rate Calibration” of small ribosomal subunit RNA. — J. Molec. Evol. 42: 201–210.

    Article  PubMed  Google Scholar 

  • Van den Hoek, C., Jahns, H. M., Mann, D. G., 1993: Algen. 3rd edn. — New York: Thieme.

    Google Scholar 

  • Wainright, P. O., Hinkle, G., Sogin, M. L., Stickel, S. K., 1993: Monophyletic origins of the Metazoa: an evolutionary link with the fungi. — Science 260: 340–342.

    Article  PubMed  CAS  Google Scholar 

  • Whatley, J. M., 1993: The endosymbiotic origin of chloroplasts. — Int. Rev. Cytol. 144: 259–299.

    Article  Google Scholar 

  • Wilkinson, M., 1996: Majority-rule reduced consensus trees and their use in bootstrap**. — Molec. Biol. Evol. 13: 437–444.

    Article  PubMed  Google Scholar 

  • Wolf, P. G., Soltis, P. S., Soltis, D. E., 1994: Phylogenetic relationships of dennstaedtioid ferns: evidence from rbcL sequences. — Molec. Phyl. Evol. 3: 383–392.

    Article  CAS  Google Scholar 

  • Zharkikh, A., Li, W.-H., 1995: Estimation of confidence in phylogeny: the complete and-partial bootstrap technique. — Molec. Phyl. Evol. 4: 44–63.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Bhattacharya, D. (1997). An introduction to algal phylogeny and phylogenetic methods. In: Bhattacharya, D. (eds) Origins of Algae and their Plastids. Plant Systematics and Evolution, vol 11. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6542-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6542-3_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83035-2

  • Online ISBN: 978-3-7091-6542-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation