Superhydrophobic Devices Molecular Detection

  • Conference paper
  • First Online:
Novel Approaches for Single Molecule Activation and Detection

Abstract

Recent advances in the single-molecule detection and manipulation provided unexpected solutions for the understanding of the physio-pathological behavior of individual biological macromolecules. Modern techniques of patterning at the micro- and nanometer scale combined with chemical treatments are being used to create surfaces that stretch the hydrophobic behavior to the limit. The ability to create surfaces with high static water contact angles (usually greater than 150°) is essential for a variety of applications, ranging from the development of biosensors to the implementation of sensitive and reliable single-molecule collection and sample preparation methods. Thus, superhydrophobic devices could be considered as nano-biotechnological single-molecule detection tools that can be applied to a wide range of high-resolution studies. To outline the paper, single-molecule detection topics and theoretical principles of superhydrophobicity are first introduced. A comprehensive overview is then given, describing how different types of devices with superhydrophobic surfaces are realized. Finally, the usefulness of the presented devices for a wide range of applications and the concluding comments are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hou J, Zhao A (2006) Detecting and manipulating single molecules with STM. NANO 01:15–33

    Article  Google Scholar 

  2. Poma A et al (2005) Interactions between saporin, a ribosome-inactivating protein, and DNA: a study by atomic force microscopy. J Microsc 217:69–74

    Article  MathSciNet  Google Scholar 

  3. Muller D et al (2006) Single-molecule studies of membrane proteins. Curr Opin Struct Biol 16:495–498

    Article  Google Scholar 

  4. Mingqian H, Jiye C (2008) Scanning near-field optical microscope and its applications in the field of single molecule detection. Prog Chem 20:984–988

    Google Scholar 

  5. Moerner W, Fromm D (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74:3597–3619

    Article  ADS  Google Scholar 

  6. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:1047–1058

    Article  Google Scholar 

  7. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    Article  Google Scholar 

  8. Ishikawa-Ankerhold H, Ankerhold R, Drummen G (2012) Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17:4047–4132

    Article  Google Scholar 

  9. Moretti M et al (2008) An ON/OFF biosensor based on blockade of ionic current passing through a solid-state nanopore. Biosens Bioelectron 24:141–147

    Article  Google Scholar 

  10. Fernandez-Cuesta I et al (2011) Fabrication of fluidic devices with 30 nm nanochannels by direct imprinting. J Vac Sci Technol B 29:06F801–1/7

    Google Scholar 

  11. Thamdrup L, Klukowska A, Kristensen A (2008) Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA. Nanotechnology 19:125301

    Article  ADS  Google Scholar 

  12. Lesoine J et al (2012) Nanochannel-based single molecule recycling. Nano Lett 13:3273–3278

    Article  Google Scholar 

  13. Dong M, Sahin O (2011) A nanomechanical interface to rapid single-molecule interactions. Nat Commun 2:247

    Article  ADS  Google Scholar 

  14. De Angelis F et al (2008) A Hybrid Plasmonic–Photonic Nanodevice for Label-Free Detection of a Few Molecules. Nano Lett 8:2321–2327

    Article  ADS  Google Scholar 

  15. Schäfer C et al (2013) A single particle plasmon resonance study of 3D conical nanoantennas. Nanoscale 5:7861–7866

    Article  ADS  Google Scholar 

  16. Zhang C et al (2013) A nanofluidic device for single molecule studies with in situ control of environmental solution conditions. Lab Chip 13:2821–2826

    Article  Google Scholar 

  17. Zhao Y et al (2013) Lab-on-a-chip technologies for single-molecule studies. Lab Chip 13:2183–2198

    Article  Google Scholar 

  18. Wenzel R (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  Google Scholar 

  19. Cassie A, Baxte S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  Google Scholar 

  20. Tuteja A et al (2008) Robust omniphobic surfaces. PNAS 105:18200–18205

    Article  ADS  Google Scholar 

  21. Zhang X et al (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18:621–633

    Article  Google Scholar 

  22. Cui Y et al (2004) Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett 4:1093–1098

    Article  ADS  Google Scholar 

  23. De Angelis F et al (2011) Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photonics 5:682–687

    Article  ADS  Google Scholar 

  24. Gentile F et al (2012) Direct imaging of DNA fibers: the visage of double helix. Nano Lett 12:6453–6458

    Article  ADS  Google Scholar 

  25. Han W, Byun M, Lin Z (2011) Assembling and positioning latex nanoparticles via controlled evaporative self-assembly. J Mater Chem 21:16968–16972

    Article  Google Scholar 

  26. Su B et al (2012) Small molecular nanowire arrays assisted by superhydrophobic pillar-structured surfaces with high adhesion. Adv Mater 24:2780–2785

    Article  ADS  Google Scholar 

  27. Accardo A et al (2010) In situ X-ray scattering studies of protein solution droplets drying on micro- and nanopatterned superhydrophobic PMMA surfaces. Langmuir 26:15057–15064

    Article  Google Scholar 

  28. Accardo A et al (2011) Ultrahydrophobic PMMA micro- and nano-textured surfaces fabricated by optical lithography and plasma etching for X-ray diffraction studies. MNE 88:1660–1663

    Google Scholar 

  29. Accardo A et al (2011) Lysozyme fibrillation induced by convective flow under quasi contact-free conditions. Soft Matter 7:6792–6796

    Article  ADS  Google Scholar 

  30. Lakshmanan A et al (2013) Aliphatic peptides show similar self-assembly to amyloid core sequences, challenging the importance of aromatic interactions in amyloidosis. PNAS 110:519–524

    Article  ADS  Google Scholar 

  31. Yagi N, Ohta N, Matsuo T (2009) Structure of amyloid fibrils of hen egg white lysozyme studied by microbeam X-ray diffraction. Int J Biol Macromol 45:86–90

    Article  Google Scholar 

  32. Hill E et al (2006) Shear flow induces amyloid fibril formation. Biomacromolecules 7:10–13

    Article  Google Scholar 

  33. Dunstan D et al (2009) Shear flow promotes amyloid-β fibrilization. PEDS 22:741–746

    Google Scholar 

  34. Lee J, Um E, Park J, Park C (2008) Microfluidic self-assembly of insulin monomers into amyloid fibrils on a solid surface. Langmuir 24:7068–7071

    Article  Google Scholar 

  35. Accardo A et al (2013) Fast, active droplet interaction: coalescence and reactive mixing controlled by electrowetting on a superhydrophobic surface. Lab Chip 13:332–335

    Article  Google Scholar 

  36. Berthier J (2008) Microdrops and digital microfluidics. William Andrew Publishing, Norwich

    Google Scholar 

  37. Marie R et al (2013) Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device. PNAS 110:4893–4898

    Article  ADS  Google Scholar 

  38. Rasmussen K et al (2011) A device for extraction, manipulation and stretching of DNA from single human chromosomes. Lab Chip 11:1431

    Article  Google Scholar 

  39. Neuman K, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505

    Article  Google Scholar 

  40. Oshige M et al (2010) A new DNA combing method for biochemical analysis. Anal Biochem 400:145–147

    Article  Google Scholar 

  41. Guan J et al (2010) Large laterally ordered nanochannel arrays from DNA combing and imprinting. Adv Mater 22:3997–4001

    Article  Google Scholar 

  42. Li B et al (2013) Macroscopic highly aligned DNA nanowires created by controlled evaporative self-assembly. ACS Nano 7:4326–4333

    Article  Google Scholar 

  43. Cerf A, Alava T, Barton R, Craighead H (2011) Transfer-printing of single DNA molecule arrays on graphene for high-resolution electron imaging and analysis. Nano Lett 11:4232–4238

    Article  ADS  Google Scholar 

  44. Cabin-Flaman A et al (2011) Combed single DNA molecules imaged by secondary ion mass spectrometry. Anal Chem 83:6940–6947

    Article  Google Scholar 

  45. Watson J, Crick F (1953) The structure of DNA. Cold Spring Harb Symp Quant Biol 18:123–131

    Article  Google Scholar 

  46. Marini M, Das G, La Rocca R, Gentile F, Limongi T, Santoriello S, Scarpellini A, Di Fabrizio E (2014) Raman spectroscopy for detection of stretched DNAs on superhydrophobic surfaces. Microelectron Eng 119:151–154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tania Limongi or Enzo Di Fabrizio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Limongi, T. et al. (2014). Superhydrophobic Devices Molecular Detection. In: Benfenati, F., Di Fabrizio, E., Torre, V. (eds) Novel Approaches for Single Molecule Activation and Detection. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43367-6_4

Download citation

Publish with us

Policies and ethics

Navigation