Assessment of Tissue Oxygenation in the Critically III

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 2000

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2000))

  • 246 Accesses

Abstract

Dysoxia is inadequacy of tissue oxygenation, the condition when oxygen levels are so low that mitochondrial respiration can no longer be sustained [1]. It is assumed that tissue dysoxia and oxygen debt are major factors in the development and the propagation of multiple organ failure (MOF) in critically ill patients. Dysoxia is the result of an abnormal relationship between oxygen supply (DO2) and oxygen demand. In order to prevent its occurrence the maintenance of ‘adequate’ mean arterial pressure (MAP), cardiac output, and DO2 are essential goals of therapy. However, the adequacy of these goals is very difficult to define. Ultimately, a normal relationship between DO2 and oxygen demand should be determined at the mitochondrial level. The measurement of tissue bioenergetics would provide a needed gold standard [2]. Several strategies have been tried recently to avoid the development of oxygen debt in intensive care patients. These strategies involve improvement of systemic hemodynamics and oxygen-derived parameters and, more recently, have focused on regional parameters. This chapter presents these strategies and assesses their usefulness in current practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Connett RJ, Honig CR, Gayeski TEJ, Brooks GA (1990) Defining hypoxia: a system view of VO2, glycolysis, energetics and intracellular P02. J Appl Physiol 68: 833–842

    PubMed  CAS  Google Scholar 

  2. Dantzker DR (1993) Adequacy of tissue oxygenation. Crit Care Med 21: S40 - S43

    Article  PubMed  CAS  Google Scholar 

  3. Robin ED (1980) Of men and mitochondria: co** with hypoxic dysoxia. Am Rev Respir Dis 122: 517–531

    PubMed  CAS  Google Scholar 

  4. Vanderkooi JM, Erecinska M, Silver IA (1991) Oxygen in mammalian tissues: methods of measurement and affinities of various reactions. Am J Physiol 260: C1131 - C1150

    PubMed  CAS  Google Scholar 

  5. Cain SM (1996) Metabolic alterations with hypoxia. Rean Urg 5: 174–177

    Article  Google Scholar 

  6. Guery BPH, Mangalaboyi J, Menager P, Mordon S, Vallet B, Chopin C (1999) Redox status of cytochrome aa3: a non invasive indicator of dysoxia in regional hypoxic or ischemic hypoxia. Crit Care Med 27: 576–582

    Article  PubMed  CAS  Google Scholar 

  7. Cain SM (1965) Appearance of excess lactate in anesthetized dogs during anemic and hypoxic hypoxia. Am J Physiol 209: 604–610

    PubMed  CAS  Google Scholar 

  8. West JB (1990) Gas transport to the periphery. In: West JB (ed) Respiratory physiology–the essentials. Williams and Wilkins, Baltimore, pp 69–85

    Google Scholar 

  9. Vincent JL (1998) The available clinical tools–oxygen-derived variables, lactate, and pHi. In: Sibbald WJ, Messmer K, Fink MP (eds) Tissue oxygenation in acute medicine. Springer, Berlin, pp 193–203

    Google Scholar 

  10. Schlichtig R, Pinsky MR (1991) Defining the hypoxic threshold. Crit Care Med 19: 147–149

    Article  PubMed  CAS  Google Scholar 

  11. Chapler CK, Cain SM (1986) The physiologic reserve in oxygen carrying capacity: studies in experimental hemodilution. Can J Physiol Pharmacol 64: 7–12

    Article  PubMed  CAS  Google Scholar 

  12. Cain SM (1977) Oxygen delivery and uptake in dogs during anemic and hypoxic hypoxia. J Appl Physiol 42: 228–234

    PubMed  CAS  Google Scholar 

  13. Ronco JJ, Fenwick JC, Tweedale MG, et al (1993) Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and non septic humans. JAMA 270: 1724–1730

    Article  PubMed  CAS  Google Scholar 

  14. Van Woerkens ECSM, Trouwborst A, Van Lanschot JJB (1992) Profound hemodilution: what is the critical level of hemodilution at which oxygen delivery-dependent oxygen consumption starts in an anesthetized human? Anesth Analg 75: 818–821

    PubMed  Google Scholar 

  15. Wasserman K, Whipp BJ (1975) Exercise physiology in health and disease. Am Rev Respir Dis 112: 219–249

    PubMed  CAS  Google Scholar 

  16. Vallet B, Lejus C, Ozier Y, Murat I, Lienhart A (1996) Peut-on définir le contenu et le transport artériel en oxygène adaptés aux besoins en cas d’anémie aiguë? Cah Anesthésiol 45: 117–122

    Google Scholar 

  17. Consensus Conference (1988) Perioperative red cell transfusion. JAMA 260: 2700–2703

    Article  Google Scholar 

  18. Hébert P, Wells G, Blajchman MA, et al (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med 340: 409–417

    Article  PubMed  Google Scholar 

  19. Shoemaker WC, Appel PL, Waxman K, Schwartz S, Chang P (1982) Clinical trial of survivors’ cardiorespiratory patterns as therapeutic goals in critically ill postoperative patients. Crit Care Med 10: 398–403

    Article  PubMed  CAS  Google Scholar 

  20. Vallet B, Chopin C, Curtis SE, et al (1993) Prognostic value of the dobutamine test in patients with sepsis syndrome and normal lactate values: a prospective, multicenter study. Crit Care Med 21: 1868–1875

    Article  PubMed  CAS  Google Scholar 

  21. Rhodes A, Malagnon I, Lamb FJ, et al (1996) Failure to increase oxygen consumption is a predictor of mortality in septic patients. Intensive Care Med 22: S274 (Abst)

    Google Scholar 

  22. Hayes MA, Timmins AC, Yau EHS, et al (1997) Oxygen transport patterns in patients with sepsis syndrome or septic shock: influence of treatment and relationship to outcome. Crit Care Med 25: 926–936

    Article  PubMed  CAS  Google Scholar 

  23. Vallet B, Chopin C and the dobutamine in sepsis study group (2000) The supranormal oxygen delivery controversy. Crit Care Med (in press)

    Google Scholar 

  24. Hayes MA, Timmins AC, Yau EHS, et al (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330: 1717–1722

    Article  PubMed  CAS  Google Scholar 

  25. Gutierrez G, Clark C, Brown SD, et al (1994) Effect of dobutamine on oxygen consumption and gastric mucosal pH in septic patients. Am J Respir Crit Care Med 150: 324–329

    Article  PubMed  CAS  Google Scholar 

  26. Gutierrez G, Palizas F, Doglio G, et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339: 195–199

    Article  PubMed  CAS  Google Scholar 

  27. Bowles SA, Schlichtig R, Kramer DJ, Klions HA (1992) Arteriovenous pH and partial pressure of carbon dioxide detect critical oxygen delivery during progressive hemorrhage in dogs. J Crit Care 7: 95–105

    Article  Google Scholar 

  28. Van der Linden P, Rausin I, Deltell A, et al (1995) Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg 80: 269–275

    PubMed  Google Scholar 

  29. Zhang H, Vincent JL (1993) Arteriovenous difference in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis 148: 867–871

    Article  PubMed  CAS  Google Scholar 

  30. Teboul JL, Michard F, Richard C (1996) Critical analysis of venoarterial CO, gradient as a marker of tissue hypoxia. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer-Verlag, Berlin, pp 296–307

    Chapter  Google Scholar 

  31. Vallet B, Teboul JL, Cain SM, Curtis SE (2000) Veno-arterial CO2 difference during regional ischemic or hypoxic hypoxia. J Appl Physiol (in press)

    Google Scholar 

  32. Salzman AL, Wang H, Wollert PS, et al (1994) Endotoxin-induced ileal mucosal hyperpermeability in pigs: role of tissue acidosis. Am J Physiol 266: G633 - G646

    PubMed  CAS  Google Scholar 

  33. Landow L, Andersen LW (1994) Splanchnic ischaemia and its role in multiple organ failure. Acta Anaesthesiol Scand 38: 626–639

    Article  PubMed  CAS  Google Scholar 

  34. Schlichtig R, Bowles SA (1994) Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 76: 2443–2451

    PubMed  CAS  Google Scholar 

  35. Vallet B, Durinck L, Chagnon JL, Nevière R (1996) Effects of hypoxic hypoxia on veno-and gut mucosal-arterial PCO2 difference in pigs. Anesthesiology, 1996, 85: A607

    Google Scholar 

  36. Vallet B, Lund N, Curtis SE, Kelly D, Cain SM (1994) Gut and muscle tissue P02 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76: 793–800

    PubMed  CAS  Google Scholar 

  37. Lote CJ, Harper L, Savage COS (1996) Mechanisms of acute renal failure. Br J Anaesth 77: 82–89

    Article  PubMed  CAS  Google Scholar 

  38. Vallet B, Nevière R, Chagnon JL (1996) Gastrointestinal mucosal ischemia. In: Rombeau JL, Takala J (eds) Gut dysfunction in critical illness. Springer-Verlag, Berlin, pp 233–245

    Chapter  Google Scholar 

  39. Temmesfeld-Wollbrück B, Szalay A, Mayer K, et al (1998) Abnormalities of gastric mucosal oxygenation in septic shock. Am J Respir Crit Care Med 157: 1586–1592

    Article  PubMed  Google Scholar 

  40. Dawson AM, Trenchard D, Guz A (1965) Small bowel tonometry: assessment of small gut muco-sal oxygen tension in dog and man. Nature 206: 943–944

    Article  PubMed  CAS  Google Scholar 

  41. Kivisaari J, Niinikoski J (1973) Use of silastic sampling tube and capillary sampling technique in the measurement of tissue PO, and PCO2. Am J Surg 125: 623–627

    Article  PubMed  CAS  Google Scholar 

  42. Fiddian-Green RG, Pittenger G, Whitehouse WM (1982) Back-diffusion of CO2 and its influence on the intramural pH in gastric mucosa. J Surg Res 33: 39–48

    Article  PubMed  CAS  Google Scholar 

  43. Mythen M, Faehnrich J (1996) Monitoring gut perfusion. In: Rombeau JL, Takala J (eds) Gut dysfunction in critical illness. Springer-Verlag, Berlin, pp 233–245

    Google Scholar 

  44. Lebuffe G, Deco ene C, Pol A, Prat A, Vallet B (1999) Regional capnometry with air-automated tonometry detects circulatory failure earlier than conventional hemodynamics after cardiac surgery. Anesth Analg 89: 1084–1090

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vallet, B., Tavernier, B., Lund, N. (2000). Assessment of Tissue Oxygenation in the Critically III. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2000. Yearbook of Intensive Care and Emergency Medicine, vol 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13455-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13455-9_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66830-5

  • Online ISBN: 978-3-662-13455-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation