Separation between vasodilation and positive inotropism by assessment of myocardial energetics in patients with dilated cardiomyopathy

  • Conference paper
Inotropic Stimulation and Myocardial Energetics

Summary

Phosphodiesterase inhibitors have vasodilating and positive inotropic properties, and these compounds may have energy saving effects due to vasodilation and energy consuming effects due to inotropism. In order to differentiate between the effects, it is necessary to relate myocardial oxygen consumption to its hemodynamic determinants. Myocardial oxygen consumption per beat was related to the following parameters: dp/dtmax, mean velocity of fiber shortening, pressure-volume work, peak developed wall stress, and stress-time integral. The best linear relationship was found between myocardial oxygen consumption per beat and the corresponding stress-time integral (r=0.71; p<0.001) in patients with idiopathic dilative cardiomyopathy. Using i.v. nitroprusside as a pure vasodilator, myocardial oxygen consumption per beat and stress-time integral decreased along this established relationship. In contrast, the phosphodiesterase inhibitor enoximone given intravenously decreased the stress-time integral significantly more than the myocardial oxygen consumption per beat.

We conclude from these data that phosphodiesterase inhibitors possess vasodilating properties which reduce the myocardial oxygen demand. In addition, they do have positive inotropic effects which increase the myocardial oxygen demand. Myocardial oxygen consumption always reflects the sum of both effects. The balance between the energy saving and the energy consuming effects may determine the efficacy of phosphodiesterase inhibitors, especially in the long-term treatment of chronic heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alousi AA, Canter JM, Montenero MJ, Fort DJ, Ferrari RA (1983) Cardiotonic activity of milrinone a new and potent cardiac bipyridine on the normal and failing heart of experimental animals. J Cardiovasc Pharmacol 5: 792–803

    Article  PubMed  CAS  Google Scholar 

  2. Baim DS, McDowell AV, Cherniles J, Monrad ES, Parker JA, Edelson J, Braunwald E, Grossman W (1983) Evaluation of a new bipyridine inotropic agent–milrinone in patients with severe congestive heart failure. N Engl J Med 309: 748–756

    Article  PubMed  CAS  Google Scholar 

  3. Dage RC, Roebel LE, Hsieh CP, Weiner DL, Woodward JK (1982) Cardiovascular properties of a new cardiotonic agent: MDL 17,043 (1,3 dihydro-4-methyl-5(4-(methylthio)-benzoyl)2Himidaxol-2-one). J Cardiovasc Pharmacol 4: 500–508

    Article  PubMed  CAS  Google Scholar 

  4. Uretzky BF, Generalovich T, Verbalis JG, Valdes Am, Reddy PS (1985) MDL 17,043 therapy in severe congestive heart failure: characterization of the early and late hemodynamic, pharmacokinetic, hormonal and clinical response. J Am Coll Cardiol 5: 1414–1421

    Article  Google Scholar 

  5. Katz AM (1986) Potential deleterious effects of inotropic agents in the therapy of chronic heart failure. Circulation 73, Suppl I1: 184–190

    Google Scholar 

  6. Packer M, Medina N, Yushak M (1984) Hemodynamic and clinical limitations of long-term isotropic therapy with amrinone in patients with severe chronic heart failure. Circulation 70: 10381047

    Google Scholar 

  7. Viquerat CE, Kereiakes D, Morris DL, Daly PA, Wexman M, Frank P, Parmley WW, Chatterjee K (1985) Alterations of left ventricular function, coronary hemodynamics and myocardial catecholamine balance with MDL 17043, a new inotropic vasodilator agent, in patients with severe heart failure. J Am Coll Cardiol 5: 326–332

    Article  PubMed  CAS  Google Scholar 

  8. Martin JL, Likoff MJ, Janicki JS, Laskey WK, Hirshfeld JW, Weber KT (1984) Myocardial energetics and clinical response to the cardiotonic agent MDL 17043 in advanced heart failure. J Am Coll Cardiol 4: 875–883

    Article  PubMed  CAS  Google Scholar 

  9. Amin DK, Shah PK, Hulse S, Shellock FG, Swan HJC (1984) Myocardial metabolic and hemodynamic effects of intravenous MDL-17,043, a new cardiotonic drug, in patients with chronic severe heart failure. Am Heart J 108: 1285–1292

    Article  PubMed  CAS  Google Scholar 

  10. Hasenfuss G, Holubarsch Ch, Heiss WH, Meinertz Th, Bonzel T, Wais U, Lehmann M, Just H (1989) Myocardial energetics in patients with dilative cardiomyopathy. Influence of nitroprusside and enoximone. Circulation (in press)

    Google Scholar 

  11. Bretschneider HJ, Cott L, Hilgert G, Probst R, Rau G (1966) Gaschromatographische Trennung and Analyse von Argon als Basis einer neuen Fremdgasmethode zur Durchblutungsmessung von Organen. Verh Dtsch Ges Herzkreislaufforsch 32: 267–273

    Article  CAS  Google Scholar 

  12. Sandler H, Dodge HT (1968) The use of single plane angiocardiograms for the calculation of left ventricular volume in man. Am Heart J 75: 325–334

    Article  PubMed  CAS  Google Scholar 

  13. Rackley CE, Dodge HT, Coble YD, Hay RE (1965) A method for determining left ventricular mass in man. Circulation 29: 666–671

    Article  Google Scholar 

  14. von Herrath M, Hasenfuss G, Holubarsch Ch, Hofmann Th, Heiss WH, Just H (1989) Continuous calculation of left ventricular wall thickness from mass and volume during one cardiac cycle for the determination of left ventricular wall stress. Clin Card (in press)

    Google Scholar 

  15. Mirsky I (1979) Elastic properties of the myocardium: a quantitative approach with physiological and clinical applications. In: Berne RM (ed) Handbook of physiology. The cardiovascular system, American Physiological Society, Washington DC, p 497

    Google Scholar 

  16. Braunwald E (1971) Control of myocardial oxygen consumption. Physiologic and clinical considerations. Am J Cardiol 27: 416–432

    Article  PubMed  CAS  Google Scholar 

  17. Strauer BE (1979) Myocardial oxygen consumption in chronic heart disease: role of wall stress, hypertrophy and coronary reserve. Am J Cardiol 44: 730–740

    Article  PubMed  CAS  Google Scholar 

  18. Sarnoff SJ, Braunwald E, Welch GH, Case RB, Stainsly WN, Marcuz R (1958) Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time-index. Am J Physiol 192: 148–156

    PubMed  CAS  Google Scholar 

  19. Coleman HN, Sonnenblick EH, Braunwald E (1969) Myocardial oxygen consumption associated with external work: the Fenn effect. Am J Physiol 217: 291–296

    PubMed  CAS  Google Scholar 

  20. Weber KT, Janicki JS (1977) Myocardial oxygen consumption: the role of wall force and shortening. Am J Physiol 233: H421 - H430

    PubMed  CAS  Google Scholar 

  21. Roebel LE, Dage RC, Cheng HC, Woodward JK (1982) Characterization of the cardiovascular activities of a new cardiotonic agent, MDL 17,043. J Cardiovasc Pharmacol 4: 721–729

    Article  PubMed  CAS  Google Scholar 

  22. Hoh JFY, Rossmanith GH, Kwan LJ, Hamilton AM (1988) Adrenaline increases the rate of cycling of cross-bridges in rat cardiac muscle as measured by pseudo-random binary noise-modulated perturbation analysis. Circ Res 62: 452–461

    Article  PubMed  CAS  Google Scholar 

  23. Holubarsch Ch, Hasenfuss G, Blanchard E, Alpert NR, Just H (1986) Myothermal economy of rat myocardium, chronic adaptation versus acute inotropism. Bas Res Cardiol 81, Suppl 1: 95102

    Google Scholar 

  24. Holubarsch Ch, Hasenfuss G, Heiss WH, Meinertz T, Just H (1987) Acute and chronic changes of myocardial energetics in the mammalian and human heart. Bas Res Cardiol Vol 82, Suppl II: 377–388

    Google Scholar 

  25. Holubarsch Ch, Hasenfuss G, Just H, Blanchard E, Mulieri LA, Alpert NR (1989) Modulation of myothermal economy of isometric force generation by positive inotropic interventions in the guinea pig myocardium. Am J Cardiol (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hj. Just Ch. Holubarsch H. Scholz

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holubarsch, C., Hasenfuss, G., Allgeier, M., Heiss, H.W., Just, H. (1989). Separation between vasodilation and positive inotropism by assessment of myocardial energetics in patients with dilated cardiomyopathy. In: Just, H., Holubarsch, C., Scholz, H. (eds) Inotropic Stimulation and Myocardial Energetics. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-07908-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07908-9_25

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-07910-2

  • Online ISBN: 978-3-662-07908-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation