Through Numerical Simulation to Scientific Knowledge

  • Chapter
  • First Online:
Measurement and Understanding in Science and Humanities
  • 287 Accesses

Abstract

Numerical simulations are used for the approximate prediction of situations under strictly defined conditions. They are based on mathematical models and represent interdependencies in the form of algorithms and computer programs. In everyday life, they are now ubiquitous for everyone, for example in weather forecasts or economic growth forecasts. In politics, they serve as an important tool for decision-making. In the scientific context, however, simulations are much more than a prediction tool. Similar to experiments, they also serve to build models themselves and thus enable the elucidation of causal relationships. Due to increasingly powerful computers, the importance of numerical simulation in science has grown steadily and rapidly over the last 50 years. In the meantime, it is considered an indispensable tool for gaining knowledge in many scientific disciplines. It is to be expected that numerical simulation will continue to grow rapidly in importance in the future and produce further surprising findings and technolo gies.

The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Bungartz, H.-J., Zimmer, S., Buchholz, M. & Pflüger, D. (2014). Modeling and simulation: an application-oriented introduction. Undergraduate Texts in Mathematics and Technology. Berlin, Heidelberg: Springer.

  2. 2.

    Eichhorn, W (1972). Die Begriffe Modell und Theorie in der Wirtschaftswissenschaft. Wirtschaftswissenschaftliches Studium: WiSt; Zeitschrift für Studium und Forschung, 1(7).

  3. 3.

    Ortlieb, CP. (2000). Exakte Naturwissenschaft und Modellbegriff. Hamburger Beiträge zur Modellierung und Simulation. Retrieved from http://www.math.uni-hamburg.de/home/ortlieb/ hb15exactnatmod.pdf (July 15, 2000).

  4. 4.

    Ortlieb, CP. (2001). Mathematische Modelle und Naturerkenntnis.

    Retrieved from http://www.math.uni-hamburg.de/home/ortlieb/hb16Istron.PDF (May 2001).

  5. 5.

    Identifying here is to be understood as assigning and recognizing and at most as a weakened equating.

  6. 6.

    Underlying the averaging procedure is the law of large numbers, which states that the relative frequency of an event approaches the theoretical probability, on the premise of repetition under the same conditions.

  7. 7.

    An example of a stochastic model is a micromodel for describing the movement of pedestrians. This can be used, for example, to predict evacuations at mass events. Here, for example, the change in direction of each individual pedestrian is described by a random variable. The flow models on which weather forecasts are based are usually deterministic in nature.

  8. 8.

    Ortlieb, CP. (2000). Exakte Naturwissenschaft und Modellbegriff. Hamburger Beiträge zur Modellierung und Simulation. Retrieved from http://www.math.unihamburg.de/home/ortlieb/hb15exaktnatmod.pdf (July 15, 2000).

  9. 9.

    Ortlieb, CP. (2001). Mathematische Modelle und Naturerkenntnis. Retrieved from http://www.math.uni-hamburg.de/home/ortlieb/hb16Istron.PDF (May 2001).

  10. 10.

    Krause, M.J. (2010). Fluid Flow Simulation and Optimisation with Lattice Boltzmann Methods on High Performance Computers: Application to the Human Respiratory System. PhD thesis, Karlsruhe Institute of Technology (KIT), Universität Karlsruhe (TH), Kaiserstraße 12, 76131 Karlsruhe, Germany, July 2010). Retrieved from http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019768.

  11. 11.

    Ehlers, W. (2014). Simulation—die dritte Säule der Wissenschaft. Themenheft Forschung: Simulation Technology, (10), pp. 8–12. Retrieved from http://www.uni-stuttgart.de/hkom/publikationen/themeissue/10/simulation.pdf.

  12. 12.

    Krause, M.J. (2015). Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI). Jahrbuch der Heidelberger Akademie der Wissenschaften für 2014. Heidelberg: Universitätsverlag Winter.

  13. 13.

    Krause, M.J. (2010). Fluid Flow Simulation and Optimisation with Lattice Boltzmann Methods on High Performance Computers: Application to the Human Respiratory System. PhD thesis, Karlsruhe Institute of Technology (KIT), Universität Karlsruhe (TH), Kaiserstraße 12, 76131 Karlsruhe, Germany, July 2010. Retrieved from http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019768, Section 3.

  14. 14.

    Ibid., section 4.

  15. 15.

    Ritterbusch, S. & Thäter. G. (2013). Modellansatz Podcast, 2013. Retrieved from http://www.modellansatz.de.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias J. Krause .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krause, M.J. (2023). Through Numerical Simulation to Scientific Knowledge. In: Schweiker, M., Hass, J., Novokhatko, A., Halbleib, R. (eds) Measurement and Understanding in Science and Humanities. Palgrave Macmillan, Wiesbaden. https://doi.org/10.1007/978-3-658-36974-3_16

Download citation

Publish with us

Policies and ethics

Navigation