Ionic Currents in the Myelinated Nerve Fibre

  • Chapter
Laboratory Techniques in Membrane Biophysics
  • 76 Accesses

Abstract

A short description will be given of the voltage clamp experiments on the myelinated nerve fibre. This technique allows measurements of the membrane currents associated to step changes of the membrane potential. An analysis of the membrane currents, with the fibre in solutions of various compositions, shows that the ionic currents during step polarizations are passive currents; i.e. the ions move as charged particles in free diffusion in an electric field. The ionic currents can therefore be described by the membrane permeability and the ionic concentrations both sides the membrane. The sodium permeability and the potassium permeability of the membrane depend on membrane potential and on time. These specific permeability changes have been described in a quantitative form. A solution of the equations describing the voltage clamp currents predicts an action potential very similar to the action potential recorded from the myelinated nerve fibre. The analysis follows the main lines of the squid fibre voltage clamp analysis made by Hodgkin and Huxley. A reference list is given at the end of this communication covering the major bulk of the original papers on the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
GBP 9.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bennet, M. R.: An analysis of the surface fixed-charge theory of the squid giant axon membrane. Biophys. J. 7, 151–164 (1967).

    Article  Google Scholar 

  • Cole, K. S., and J. W. Moore: Potassium ion current in the squid giant axon: dynamic characteristic. Biophys. J. 1, 1–14 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Dodge, F. A.: Ionic permeability changes underlying nerve excitation. Biophysics of physiological and pharmacological actions, p. 112–143. Washington: Amer. Ass. Adv. Sci. 1961.

    Google Scholar 

  • Dodge, F. A., and B. Frankenhaeuser: Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J. Physiol. (Lond.) 143, 76–90 (1958).

    CAS  Google Scholar 

  • Dodge, F. A., and B. Frankenhaeuser: Sodium currents in the myelinated nerve fibre of Xenopus leavis investigated with the voltage clamp technique. J. Physiol. (Lond.) 148, 188–200 (1959).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: The hypothesis of saltatory conduction. Cold Spr. Harb. Symp. quant. Biol. 17, 27–32 (1952).

    Article  CAS  Google Scholar 

  • Frankenhaeuser, B.: (1) A method for recording resting and action potentials in the isolated myelinated frog nerve fibre. J. Physiol. (Lond.) 135, 550–559 (1957).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: (2) The effect of calcium on the myelinated nerve fibre. J. Physiol. (Lond.) 137, 245–260 (1957).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: Steady state inactivation of sodium permeability in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 148, 671–676 (1959).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: (1) Quantitative description of sodium currents in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 151, 491–501 (1960).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: (2) Sodium permeability in toad nerve and in squid nerve. J. Physiol. (Lond.) 152, 159–166 (1960).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: (1) Delayed currents in myelinated nerve fibres of Xenopus laevis investigated with voltage clamp technique. J. Physiol. (Lond.) 160, 40–45 (1962).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: (2) Instantaneous potassium currents in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 160, 46–53 (1962).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: (3) Potassium permeability in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 160, 54–61 (1962).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: (1) A quantitative description of potassium currents in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 169, 424–430 (1963).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: (2) Inactivation of the sodium-carrying mechanism in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 169, 445–451 (1963).

    CAS  Google Scholar 

  • Frankenhaeuser, B.: Computed action potential in nerve from Xenopus laevis. J. Physiol. (Lond.) 180, 780–787 (1965).

    CAS  Google Scholar 

  • Frankenhaeuser, B. and A. L. Hodgkin: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.) 137, 218–244 (1957).

    CAS  Google Scholar 

  • Frankenhaeuser, B. and A. F. Huxley: The action potential in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage clamp data. J. Physiol. (Lond.) 171, 302–315 (1964).

    CAS  Google Scholar 

  • Frankenhaeuser, B. and L. E. Moore: (1) The effect of temperature on the sodium and potassium permeability changes in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.) 169, 431–437 (1963).

    CAS  Google Scholar 

  • Frankenhaeuser, B. and L. E. Moore: (2) The specificity of the initial current in myelinated nerve fibres of Xenopus laevis. Voltage clamp experiments. J. Physiol. (Lond.) 169, 438–444 (1963).

    CAS  Google Scholar 

  • Frankenhaeuser, B. and A. B. Vallbo: Accommodation in myelinated nerve fibres of Xenopus laevis as computed on the basis of voltage clamp data. Acta physiol. scand. 63, 1–20 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Hille, B.: Common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature (Lond.) 210, 1220–1222 (1966).

    Article  CAS  Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley: (1) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116, 449–472 (1952).

    CAS  Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley: (2) The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 473–496 (1952).

    CAS  Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley: (3) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 497–506 (1952).

    CAS  Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley: (4) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    CAS  Google Scholar 

  • Hodgkin, A. L., and B. Katz: Measurement of current-voltage relations in the membrane of the giant axons of Loligo. J. Physiol. (Lond.) 116, 424–448 (1952).

    CAS  Google Scholar 

  • Hodgkin, A. L., and B. Katz: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.) 108, 37–77 (1949).

    CAS  Google Scholar 

  • Huxley, A. F., and R. Stämpfli: Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. (Lond.) 108, 315–339 (1949).

    Google Scholar 

  • Huxley, A. F., and R. Stämpfli: Direct determination of membrane resting potential and action potential in single myelinated nerve fibres. J. Physiol. (Lond.) 112, 476–495 (1951).

    CAS  Google Scholar 

  • Koppenhöfer, E.: Die Wirkung von Tetraäthylammoniumchlorid auf die Membranströme Ran vierscher Schnürringe von Xenopus laevis. Pflügers Arch. ges. Physiol. 293, 34–55 (1967).

    Article  Google Scholar 

  • Narahashi, T., N. C. Anderson, and J. W. Moore: Tetrodotoxin does not block excitation from inside the nerve membrane. Science 153, 765–767 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., J. W. Moore, and W. R. Scott: Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. gen. Physiol. 47, 965–974 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Stämpfli, R.: Bau und Funktion isolierter markhaltiger Nervenfasern. Ergebn. Physiol. 47, 69–165 (1952).

    Google Scholar 

  • Stämpfli, R.: Conduction and transmission in the nervous system. Ann. Rev. Physiol. 25, 493–522 (1963).

    Article  Google Scholar 

  • Tasaki, I.: Nervous Transmission. Springfield: Thomas 1953.

    Google Scholar 

  • Vallbo, A. B.: Accommodation related to inactivation of the sodium permeability in single myelinated nerve fibres from Xenopus laevis. Acta physiol. scand. 61, 429–444 (1964).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Frankenhaeuser, B. (1969). Ionic Currents in the Myelinated Nerve Fibre. In: Passow, H., Stämpfli, R. (eds) Laboratory Techniques in Membrane Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87259-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87259-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-04592-2

  • Online ISBN: 978-3-642-87259-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation