Axisymmetric plastic collapse of shells of revolution according to the Nakamura yield criterion

  • Conference paper
Applied Mechanics
  • 604 Accesses

Abstract

The plastic collapse of thin shells of revolution under axisymmetric loads is considered. A rigid perfectly-plastic material is assumed. Methods of limit analysis are applied to find collapse loads. The Tresca-Mohr yield criterion, as closely approximated by Nakamura [1, 2] is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

ε s , εθ :

Plastic strain-rates of the middle surface of a shell

f i , g i , h i :

Yield functions

H :

Thickness of a sheJI

H i :

A constituent regular face of a piecewise regular yield hypersurface for which h i = 1

H 1H 2 :

An intersection of two regular faces

H 1H 2 :

A transition between two regular faces corresponding to either a weak or a strong discontinuity

k :

Geometrical parameter:\(\frac{{{M_0}}}{{L{N_0}}} = \frac{H}{{4L}}\)

K s , K θ :

Plastic rates of curvature of the middle surface x s =K s M 0/N 0, x θ = K θ M 0/N 0

L :

A typical shell length

λ, λ i :

Deformation parameters in Mises flow law

M 0 :

Yield bending momentjlength, \(\frac{{{\sigma _0}{H^2}}}{4}\)

M s , M θ :

Bending moments/length, m s = M s /M 0, m θ = M θ/M 0

N 0 :

Yield normal foree/Iength, σ0 H

N s , N θ :

Normal forces/length, n s = N s /N 0, n θ = N θ/N 0

Q s :

Transverse shear force/Iength, q s = Q s /N 0

Q :

Generalized stress vector

q :

Generalized strain-rate vector

R :

Radius of a parallel eirele, r = R/L

R 1, R 2 :

Prineipal radii of curvature of a meridian and parallel cirele, respeetively, r l = R 1/L, r 2 = R 2/L

S :

Length measured along a meridian, s = S/L

σ 0 :

Yield stress in simple tension

θ :

Coordinate defining the position of a meridian

V, W :

Veloeities in the S-direetion and the direetion normal to the shell middle surfaee, respeetively, v = V/L, w = W/L

()′:

\(\frac{{d()}}{{ds}}\)

References

  1. Nakamura, T.: Plastic analysis of shells of revolution under axisymmetric loads, Diss. Stanford University, 1961, see also Dissertation Abstracts 27, 4316 (1962)1.

    Google Scholar 

  2. Flügge, W., and T. Nakamura: Plastic analysis of shells of revolution under axisymmetric loads. Ing. Archiv, 34, 238–247 (1965).

    Article  Google Scholar 

  3. Hodge, P. G., Jr.: Limit analysis of rotationally symmetric plates and shells, Englewood Cliffs, N.J.: Prentice-Hall 1963.

    MATH  Google Scholar 

  4. Koopman, D. C. A., and R. H. Lance: On linear programming and plastic limit analysis. J. Mech. Phys. Solids, 13, 77–87 (1965).

    Article  ADS  Google Scholar 

  5. Dinno, K. S., and S. S. Gill: Limit pressure of symmetrically loaded shells of revolution. Int. J. Mech. Sci. 7, 15–19 (1965).

    Article  Google Scholar 

  6. Prager, W.: The general theory of limit design, Proc. 8th Int. Congr. Appl. Mech., 2, 65–72, Istanbul, (1952).

    Google Scholar 

  7. Gvozdev, A. A.: The determination of the value of the collapse load for statically indeterminate systems undergoing plastic deformations. Int. J. Mech. Sci. 1, 322–335 (1960).

    Article  MathSciNet  Google Scholar 

  8. Gvozdev, A. A.: Translation from Proc. Conf. Plastic Deformations, 19 (1936), Akad. Nauk SSSR, Moscow-Leningrad 1938.

    Google Scholar 

  9. Drucker, D. C.: A more fundamental approach to plastic stress-strain relations, Proc. First U.S. Nat. Congr. Appl. Mech. 1951, pp. 487–491.

    Google Scholar 

  10. Koiter, W. T.: General theorems for elasticplastic solids, Progress in Solid Mechanics, 1, Ed.: Sneddon, LN., and R. Hill, 165–221, Tech. Univ. Delft, Netherlands, (1960).

    Google Scholar 

  11. Koiter, W. T.: Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface. Quart. Appl. Math. 11, 350 (1953).

    MathSciNet  MATH  Google Scholar 

  12. Onat, E. T., and W. Prager: Limit analysis of shells of revolution I, II, Proc. Roy. Netherlands Acad. Sci., B 57, 534–548 (1954).

    MathSciNet  MATH  Google Scholar 

  13. Gerdeen, J. C.: Shell plasticity — piecewise smooth trajectories on the Nakamura yield surface, Diss. Division of Engineering Mechanics, Stanford University 1965.

    Google Scholar 

  14. Coddington, E., and N. Levinson: Theory of ordinary differential equations, New York: McGraw-Hill, Chapters 1, 3. (1955).

    MATH  Google Scholar 

  15. Ince, E. L.: Ordinary differential equations, Chapter III. Dover Publications 1956.

    Google Scholar 

  16. Gerdeen, J. C.: Theoretical analysis of the plastic collapse of thin shell structures, Battelle Special Report, Battelle Columbus Laboratories, Columbus, Ohio, 1966.

    Google Scholar 

  17. Plügge, W.: Stresses in shells, Berlin/Göttingen/Heidelberg: Springer 1962, pp. 320, 355–359.

    Google Scholar 

  18. Hildebrand, F. B.: Advanced calculus for applications. Prentice Hall 1963, pp. 96–98.

    MATH  Google Scholar 

  19. Stanford library program No. 76, “Fourthorder Adams Predictor—Corrector Method”, Stanford Computation Center, Stanford, California.

    Google Scholar 

  20. Stanford library program No. 16, “Newton’s forward and backward interpolation for equally spaced points”, Stanford Computation Center, Stanford, California.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flügge, W., Gerdeen, J.C. (1969). Axisymmetric plastic collapse of shells of revolution according to the Nakamura yield criterion. In: Hetényi, M., Vincenti, W.G. (eds) Applied Mechanics. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85640-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85640-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85642-6

  • Online ISBN: 978-3-642-85640-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation