Viscous Fluid Mechanics

  • Chapter
Viscous Flow Applications

Part of the book series: Topics in Boundary Element Research ((TBOU,volume 5))

  • 278 Accesses

Abstract

First we give the governing equations for an incompressible viscous newtonian fluid completed with boundary conditions.

An integral equation method for two-dimensional Stokes flows is presented which consists in solving the biharmonic equation.

A direct boundary integral formulation is developed for the biharmonic equation. The representation of the stream function and its derivative obtained involves all the quantities defined on the boundary.

In the case of Stokes flow the discretization of these representations leads to a linear system of equations.

When the inertia effects are taken into account, the evaluation of these terms is necessary. In this latter case four internal parameters are defined: the two components of the velocity and the two gradients of the vorticity. By discretizing the domain we obtain nonlinear algebraic equations which can be solved by classical method for small Reynold’s numbers, but much elaborated methods are necessary when the inertia effects are important.

Finally we present some examples which prove the numerical efficiency of this formulation compared with results given by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bourot, J.M., “Sur un procédé de résolution approchée du problème aux limites, pour certains écoulements de fluide parfait ou visqueux, en présence d’obstacles et de parois”, C.R. Acad. Sci., 266, 470–473 (1968).

    Google Scholar 

  2. Smith, G.D., “Numerical Solution of Partial Differential Equations”, Oxford University Press, London 1969.

    Google Scholar 

  3. Chung, T.J., “Finite Element Analysis in Fluid Dynamics”, McGraw-Hill 1978.

    Google Scholar 

  4. Bezine, G. and Gamby, D., “A New Integral Equation Formulation for Plate Bending Problems”, Recent Advances in Boundary Element Methods, Pentech Press, London 1978.

    Google Scholar 

  5. Bezine, G., “Boundary Integral Formulation for Plate Flexure with Arbitrary Boundary Conditions”, Mech. Res. Comm., 5, 197–206 (1978).

    Article  MATH  Google Scholar 

  6. Bergman, S. and Schiffer, M., “Kernel Functions and Elliptic Differential Equations in Mathematical Physics”, Academic Press, New York, 1953.

    MATH  Google Scholar 

  7. Batchelor, G.K., “An Introduction to Fluid Dynamics”, Cambridge University Press, 1967.

    Google Scholar 

  8. Bonneau, D., “Formation du film lubrifiant dans les contacts à alimentation non surabondante. Aspects expérimentaux et théoriques”, Thèse de Doctorat des Sciences Physiques. Poitiers, 1986.

    Google Scholar 

  9. Bezine, G. and Bonneau, D., “On a Procedure for Numerical Evaluation of Surface Integrals in Two-Dimensional Boundary Integral Equation Method”, Engineering Analysis, 2, 2–8 (1985).

    Article  Google Scholar 

  10. Demidovitch, B. and Maron, I., “Elements de calcul numérique”, Editions de Moscou, 1973.

    MATH  Google Scholar 

  11. Coutanceau, M. and Bouard, R., “On the Computation of the Plane and Axisymmetric Cree** Flows Around Body in Duct”, European Mechanics Colloquium 129. Computation of Flow Around Systems of Airfoils, Bulgarie, 1980.

    Google Scholar 

  12. Curtis, A.R. and Man, C.R., “The Viscous Drag on Cylinders Falling Symmetrically Between Parallel Walls”. J. Phys. D. Appl. Phys. 11, 1173–1178 (1978).

    Article  ADS  Google Scholar 

  13. Takaisi, Y., “The Drag on a Circular Cylinder Moving with Low Speeds in a Viscous Liquid Between two Parallel Walls”, J. Phys. Soc. Japan, 10, 685–693 (1955).

    Article  MathSciNet  ADS  Google Scholar 

  14. Richardson, S., “A Stick-Slip Problem Related to the Motion of a Free Jet Low Reynolds Numbers”, Proc. Cambridge Phil. Soc., 67, 477–489 (1970).

    Article  ADS  MATH  Google Scholar 

  15. Michael, D.H., “The Separation of a Viscous Liquid at a Straight Edge”, Mathematika, 5, 82–84 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  16. Ruschak, K.J., “A method for Incorporating Free Boundaries with surface Tension in Finite Element Fluid-Flow Simulators”, Int. J. Numerical Methods Eng., 15, 639–648 (1980).

    Article  ADS  MATH  Google Scholar 

  17. Zienkiewicz, O.C., “The Finite Element Method”, McGraw-Hill, London, 1977.

    MATH  Google Scholar 

  18. Haisler, W.E. and Stricklin, J.A., “Computational Methods for Solving Non-Linear Structural Mechanics Problems”, Proc. Int. Conf. on Computational Meth. in Non-Linear Mech., Université du Texas, USA, pp. 393–403, 1974.

    Google Scholar 

  19. Stoer, J. and Bulirsch, R., “Introduction to numerical Analysis”. Springer-Verlag, Berlin, 1976.

    Google Scholar 

  20. Golub, G.H. and Van Loan, C.F., “Matrix Computations”, North Oxford Academic, Oxford, 1983.

    MATH  Google Scholar 

  21. Polak, E., “Computational Methods in Optimization”. Academic Press, New York 1971.

    Google Scholar 

  22. Kamat, M.P., Watson, L.T. and Junkins, J.L., “A Robust and Efficient Hybrid Method for Finding Multiple Equilibrium Solutions”, C.R. 3e Congrès Int. Methods Num. Ing., Paris, pp. 799–809, 1983.

    Google Scholar 

  23. Bouard, R., “Etude de l’écoulement autour d’un cylindre soumis à une translation uniforme après un départ impulsif pour des nombres de Reynolds allant de 0 à 104”, Thèse de Doctorat es Sciences, Poitiers, Juin 1986.

    Google Scholar 

  24. Keller, H.B. and Takami, H., “Numerical Studies of Steady Viscous Flow about Cylinders”, Proc. Symp. Math. Université du Wisconsin, USA, pp. 115–135, 1966.

    Google Scholar 

  25. Gartling, D. and Becker, E.B., “Computationally Efficient Finite Element Analysis of Viscous Flow ProblemsCh. in Non-Linear Mech., Université du Texas, USA, pp. 603–614, 1974.

    Google Scholar 

  26. Dennis, S.C.R. and Chang, G.Z., “Numerical Solutions for Steady Flow Past a Circular Cylinder at Reynolds Numbers up to 100”, J. of Fluid Mechanics, 42, 471 (1970).

    Article  ADS  MATH  Google Scholar 

  27. Ta Phuoc Loc, “Etude numérique de l’écoulement d’un fluide visqueux incompressible autour d’un cylindre fixe ou en rotation”. J. de Mécanique, 14, 109 (1975).

    ADS  MATH  Google Scholar 

  28. Dennis, S.C.R., “A Numerical Method for Calculating Steady Flow Past a Cylinder”, Lecture Notes Phys., Vol. 165, 1976.

    Google Scholar 

  29. Tuann, S.Y. and Olson, M.D., “Numerical Studies of the Flow Around a Circular Cylinder by a Finite Element Method”. Computers and Fluids, 6, 219 (1978).

    Article  ADS  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Bonneau, D., Bezine, G. (1989). Viscous Fluid Mechanics. In: Brebbia, C.A. (eds) Viscous Flow Applications. Topics in Boundary Element Research, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83683-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83683-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83685-5

  • Online ISBN: 978-3-642-83683-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation