Lymphocyte Activation and the Family of NF-κB Transcription Factor Complexes

  • Chapter
Mechanisms in B-Cell Neoplasia 1992

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 182))

Abstract

NF-κB is a transcription factor complex known for some time to play a pivotal role in the regulated expression of a large number of genes which are activated during an immune response. Antigen in the context of the appropriate antigen presenting cell (APC) leads to the proliferation of T cells and the expression of factors (predominantly cytokines) from the competent T cells. These factors in turn stimulate various cells involved in an immune response. Both the signal emanating from the initial antigenic encounter and the secondary factor-mediated responses in other cells involve NF-κB, at least in part. For example, NF-κB has been shown to be essential for the regulated expression of the immunoglobulin k light chain (whence the name NF-κB, a nuclear factor binding to the kappa light chain B element), the tumor necrosis factor alpha (TNF-α) and beta (TNF-β), interferon-β, the IL-2 receptor, the IL-6 cytokine, the IL-2 growth factor, GM-CSF, G-CSF, and MHC-Class I, just to name a few immunomodulatory gene products. NF-κB is implicated also in the induction of various acute phase proteins (e.g. angiotensinogen), some transcription factors/oncogenes (e.g. IRF-1 and c-myc) and, most importantly, in the induction of various viruses, including the human immunodeficiency virus (HIV), cytomegalovirus, adenovirus and SV40. NF-κB mediates its effects through so-called κB elements; the consensus sequence for a κB site reads GGGRNNYYCC, but additional variants exist to which NF-κB binds. A variety of agents as well as factors produced by stimulated cells activate NF-κB in the respective target cells; included among these are a large array of T cell mitogens (e.g. lectins, anti CD3 and anti CD2 antibodies, in addition to antigen/APC), the factors TNF-α and TNF-β, IL-1, double-stranded RNA, chemical agents which cause PKC activation, DNA damaging agents and treatments which produce oxygen radicals. In addition, several viruses have been shown to cause NF-κB activation like the HTLV-I and -II viruses, the HSV-1 virus, the HHV-6 virus, the Hepatitis B virus and the adenovirus. These viruses apparently subvert the cellular mechanisms to induce an activation phenotype in cells. The listing given here for agents which activate NF-κB and for genes regulated by NF-κB is only a partial one and is only meant to convey the central role this transcription factor plays during cellular activation and, in particular, during immune activation (for a complete listing and the appropriate References see recent reviews [1, 2]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeuerle PA (1991) The inducible transcription activator NF-κB: regulation by distinct protein subunits. Biochimica et Biophysica Acta 1072:63–80.

    PubMed  CAS  Google Scholar 

  2. Grilli M, Chiu JJ-S, Lenardo MJ (1992) NF-κB and Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytology, in press.

    Google Scholar 

  3. Sen R, Baltimore D (1986) Multiple nuclear factors interact with the Immunoglobulin enhancer sequences. Cell 46:705–716.

    Article  PubMed  CAS  Google Scholar 

  4. Sen R, Baltimore D. (1986) Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47:921–928.

    Article  PubMed  CAS  Google Scholar 

  5. Baeuerle PA, Baltimore D (1988) IκB: a specific inhibitor of the NF-κB transcription factor. Science 242:540–546.

    Article  PubMed  CAS  Google Scholar 

  6. Baeuerle PA, Baltimore D (1988) Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-κB transcription factor. Cell 53:211–217.

    Article  PubMed  CAS  Google Scholar 

  7. Lenardo MJ, Kuang A, Gifford A, Baltimore D (1988) NF-κB purification from bovine spleen: nucleotide stimulation and binding site specificity. Proc Natl Acad Sci. USA 85:8825–8829.

    Article  PubMed  CAS  Google Scholar 

  8. Lenardo MJ, Baltimore D (1989) NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58:227–229.

    Article  PubMed  CAS  Google Scholar 

  9. Baeuerle PA, Baltimore D (1989) A 65-κD Subunit of active NF-κB is required for inhibition of NF-κB by IκB. Genes Dev 3:1689–1698.

    Article  PubMed  CAS  Google Scholar 

  10. Shirakawa F, Mizel SB (1989) In vitro activation and nuclear translocation of NF-κB catalyzed by cyclic AMP-dependent protein kinase and protein kinase C. Mol Cell Biol 9:2424–2430.

    PubMed  CAS  Google Scholar 

  11. Ghosh S, Baltimore D (1990) Activation in vitro of NF-κB by phosphorylation of its inhibitor IκB. Nature 344:678–682.

    Article  PubMed  CAS  Google Scholar 

  12. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J 10:2247–2258.

    PubMed  CAS  Google Scholar 

  13. Bours V, Villalobos J, Burd PR, Kelly K, Siebenlist U (1990) Cloning of a mitogen-inducible gene encoding a κB DNA-binding protein with homology to the rel oncogene and to cell-cycle motifs. Nature 348:76–80.

    Article  PubMed  CAS  Google Scholar 

  14. Ghosh S, Gifford AM, Riviere LR, Tempst P, Nolan GP, Baltimore D (1990) Cloning of the p50 DNA binding subunit of NF-κB: homology to rel and dorsal. Cell 62:1019–1029.

    Article  PubMed  CAS  Google Scholar 

  15. Kieran M, Blank V, Logeat F, Vandekerckhove J, Lottspeich F, Bail OL, Urban MB, Kourilsky P, Baeuerle PA, Israël A (1990) The DNA Binding subunit of NF-κB is identical to factor KBF1 and homologous to the rel oncogene product. Cell 62:1007–1018.

    Article  PubMed  CAS  Google Scholar 

  16. Meyer R, Hatada EN, Hohmann H-P, Haiker M, Bartsch C, Röthlisberger U, Lahm H-W, Schlaeger JE, Van Loon APGM, Scheidereit C (1991) Cloning of the DNA-binding subunit of human nuclear factor κB: The level of its mRNA is strongly regulated by phorbol ester or tumor necrosis factor a. Proc Natl Acad Sci. USA 88:966–970.

    Article  PubMed  CAS  Google Scholar 

  17. Andrews BJ, Herskowitz I (1989) The yeast SW14 protein contains a motif present in developmental regulators and is part of a complex involved in cell-cycle-dependent transcription. Nature 342:830–833.

    Article  PubMed  CAS  Google Scholar 

  18. Breeden L, Nasmyth K (1987) Similarity between cell-cycle genes of budding yeast and fission yeast and the notch gene of Drosophila. Nature 329:651–654.

    Article  PubMed  CAS  Google Scholar 

  19. Aves SJ, Durkacz BW, Carr A, Nurse P (1985) Cloning, sequences and transcriptionalcontrol of the Schizosaccharomyces pombe cdc10’start’ gene. EMBO J 4:457–463.

    PubMed  CAS  Google Scholar 

  20. Lux SE, John KM, Bennett V (1990) Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344:36–42.

    Article  PubMed  CAS  Google Scholar 

  21. Haskill S, Beg AA, Tompkins SM, Morris S, Yurochko AD, Sampson-Johannes A, Mondai K, Ralph P, Baldwin AS, Jr (1991) Characterization of an immediate-early gene induced in adherent monocytes that encodes IκB-like activity. Cell 65:1281–1289.

    Article  PubMed  CAS  Google Scholar 

  22. Fan C-M, Maniatis T (1991) Generation of p50 subunit of NF-κB by processing of p105 through an ATP-dependent pathway. Nature 354:395–398.

    Article  PubMed  CAS  Google Scholar 

  23. Blank V, Kourilsky P, Israël A (1991) Cytoplasmic retention, DNA binding and processing of the NF-κB p50 precursor are controlled by a small region in its C-terminus. EMBO J 10:4159–4167.

    PubMed  CAS  Google Scholar 

  24. Logeat F, Israël N, Ten R, Blank V, Bail OL, Kourilsky P, Israël A (1991) Inhibition of transcription factors belonging to the rel/NF-κB family by a transdominant negative mutant. EMBO J 10:1827–1832.

    PubMed  CAS  Google Scholar 

  25. Henkel T, Zabel U, van Zee K, Müller JM, Fanning E, Baeuerle PA (1992) Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-κB subunit. Cell 68:1121–1133.

    Article  PubMed  CAS  Google Scholar 

  26. Inoue J-I, Kerr LD, Kakizuka A, Verma IM (1992) IκBγ, a 70 kd protein identical to the c-terminal half of p110 NF-κB: a new member of the IκB family. Cell 68:1109–1120.

    Article  PubMed  CAS  Google Scholar 

  27. Bours V, Burd PR, Brown K, Villalobos J, Park S, Ryseck R-P, Bravo R, Kelly K, Siebenlist U (1992) A novel mitogen-inducible gene product related to p50/pl05-NF-κB participates in transactivation through a KB site. Mol Cell Biol 12:685–695.

    PubMed  CAS  Google Scholar 

  28. Schmid RM, Perkins ND, Duckett CS, Andrews C, Nabel GJ (1991) Cloning of an NF-κB subunit which stimulates HIV transcription in synergy with p65. Nature 352:733–736.

    Article  PubMed  CAS  Google Scholar 

  29. Neri A, Chang C-C, Lombardi L, Salina M, Corradini P, Maiolo AT, Chaganti RSK, Dalla-Favera RSK (1991) B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-κB p50. Cell 67:1075–1087.

    Article  PubMed  CAS  Google Scholar 

  30. Ruben SM, Dillon PJ, Schreck R, Henkel T, Chen C-H, Maher M, Baeuerle PA, Rosen CA (1991) Isolation of a rel-related human cDNA that potentially encodes the 65-kD subunit of NF-κB. Science 251:1490–1493.

    Article  PubMed  CAS  Google Scholar 

  31. Nolan GP, Ghosh S, Liou H-C, Tempst P, Baltimore D (1991) DNA binding and IκB inhibition of the cloned p65 subunit of NF-κB, a rel-related Polypeptide. Cell 64:1–10.

    Article  Google Scholar 

  32. Brownell E, Mittereder N, Rice NR (1989) A human rel proto-oncogene cDNA containing an Alu fragment as a potential coding exon. Oncogene 4:935–942.

    PubMed  CAS  Google Scholar 

  33. Ryseck R-P, Bull P, Takamiya M, Bours V, Siebenlist U, Dobrzanski P, Bravo R (1992) RelB, a new rel family transcription activator that can interact with p50-NF-κB. Mol Cell Biol 12:674–684.

    PubMed  CAS  Google Scholar 

  34. Steward R (1987) Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238:692–694.

    Article  PubMed  CAS  Google Scholar 

  35. Rushlow CA, Han K, Manley JL, Levine M (1989) The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila. Cell 59:1165–1177.

    Article  PubMed  CAS  Google Scholar 

  36. Steward R (1989) Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function. Cell 59:1179–1188.

    Article  PubMed  CAS  Google Scholar 

  37. Roth S, Stein D, Nüsslein-Volhard C (1989) A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59:1189–1202.

    Article  PubMed  CAS  Google Scholar 

  38. Wilhelmsen KC, Eggleton K, Temin HM (1984) Nucleic acid sequences of the oncogene v-rel in reticuloendotheliosis virus strain t and its cellular homolog, the proto-oncogene c-rel. J Virol 52:172–182.

    PubMed  CAS  Google Scholar 

  39. Ruben SM, Narayanan R, Klement JF, Chen CH, Rosen CA (1992) Functional characterization of the NF-KB p65 transcriptional activator and an alternatively spliced derivative. Mol Cell Biol 12:444–454.

    PubMed  CAS  Google Scholar 

  40. Ballard DW, Dixon EP, Peffer NJ, Bogerd H, Doerre S, Stein B, Green WC (1992) The 65-kDa subunit of human NF-κB functions as a potent transcriptional activator and a target for v-Rel-mediated repression. Proc Natl Acad Sci. USA 89:1875–1879.

    Article  PubMed  CAS  Google Scholar 

  41. Inoue J-I, Kerr LD, Ransone LJ, Bengal E, Hunter T, Verma IM (1991) c-rel activates but v-rel suppresses transcription from κB sites. Proc Natl Acad Sci. USA 88:3715–3719.

    Article  PubMed  CAS  Google Scholar 

  42. Kamens J, Richardson P, Mosialos G, Brent R, Gilmore T (1990) Oncogenic transformation by vRel requires and amino-terminal activation domain. Mol Cell Biol 10:2840–2847.

    PubMed  CAS  Google Scholar 

  43. Ip YT, Kraut R, Levine M, Rushlow CA (1991) The dorsal morphogen is a sequence-specific DNA-binding protein that interacts with a long-range repression element in Drosophila. Cell 64:439–446.

    Article  PubMed  CAS  Google Scholar 

  44. Thisse C, Perrin-Schmitt F, Stoetzel C, Thisse B (1991) Sequence-specific transactivation of the Drosophila twist gene by the dorsal gene product. Cell 65:1–20.

    Article  Google Scholar 

  45. Ruben SM, Klement JF, Coleman TA, Maher M, Chen C-H, Rosen CA (1992) I-Rel: a novel rel-related protein that inhibits NF-κB transcriptional activity. Genes Dev 6:745–760.

    Article  PubMed  CAS  Google Scholar 

  46. Sica A, Tan T-H, Rice N, Kretzschmar M, Ghosh P, Young HA (1992) The c-rel protooncogene product c-Rel but not NF-κB binds to the intronic region of the human interferon-γ gene at a site related to an interferon-stimulable response element. Proc Natl Acad Sci. USA 89:1740–1744.

    Article  PubMed  CAS  Google Scholar 

  47. Kochel T, Rice NR (1992) v-rel-and c-rel-protein complexes bind to the NF-κB site in vitro. Oncogene 7:567–572.

    PubMed  CAS  Google Scholar 

  48. Ballard DW, Walker WH, Doerre S, Sista P, Molitor JA, Dixon EP, Peffer NJ, Hannink M, Greene WC (1990) The v-rel encodes a κB enhancer binding protein that inhibits NF-κB function. Cell 63:803–814.

    Article  PubMed  CAS  Google Scholar 

  49. Schmitz ML, Baeuerle PA (1991) The p65 subunit is responsible for the strong transcription activating potential of NF-κB. EMBO J 10:3805–3817.

    PubMed  CAS  Google Scholar 

  50. Hansen SK, Nerlov C, Zabel U Verde P, Johnsen M, Baeuerle PA, Blasi F (1992) A novel complex between the p65 subunit of NF-κB and c-Rel binds to a DNA element involved in the phorbol ester induction of the human Urokinase gene. EMBO J 11:205–213.

    PubMed  CAS  Google Scholar 

  51. Urban MB, Baeuerle PA (1990) The 65-kD subunit of NF-κB is a receptor for IκB and a modulator of DNA-binding specificity. Genes Dev 4:1975–1984.

    Article  PubMed  CAS  Google Scholar 

  52. Urban MB, Baeuerle PA (1991) The role of the p50 and p65 subunits of NF-κB in the recognition of cognate sequences. New Biologist 3:279–288.

    PubMed  CAS  Google Scholar 

  53. Kang S-M, Tran A-C, Grilli M, Lenardo MJ (1992) NF-κB subunit regulation in non transformed CD4+ T lymphocytes. Science 256:1452–1456.

    Article  PubMed  CAS  Google Scholar 

  54. McDonnell PC, Kumar S, Rabson AB, Gelinas C (1992) Trasncriptional activity of rel family proteins. Oncogene 7:163–170.

    PubMed  CAS  Google Scholar 

  55. Molitor JA, Walker WH, Doerre S, Ballard W, Green W (1990) NF-κB: a family of inducible and differentially expressed enhancer-binding proteins in human T cells. Proc Natl Acad Sci. USA 87:10028–10032.

    Article  PubMed  CAS  Google Scholar 

  56. Bull P, Hunter T, Verma IM (1989) Transcriptional induction of the murine c-rel gene with serum and phorbol-12-myristate-13-acetate in fibroblasts. Mol Cell Biol 9:5239–5243.

    PubMed  CAS  Google Scholar 

  57. Fujita T, Nolan GP, Ghosh S, Baltimore D (1992) Independent modes of transcriptional activation by the p50 and p65 subunits of NF-κB. Genes Dev 6:775–787.

    Article  PubMed  CAS  Google Scholar 

  58. Kretzschmar M, Meisterernst M, Scheidereit C, Li G, Roeder RG (1992) Transcriptional regulation of the HIV-1 promoter by NF-κB in vitro. Genes Dev 6:761–774.

    Article  PubMed  CAS  Google Scholar 

  59. Zabel U, Baeuerle PA (1990) Purified human IκB can rapidly dissociate the complex of the NF-κB transcription factor with its cognate DNA. Cell 61:255–265.

    Article  PubMed  CAS  Google Scholar 

  60. Davis N, Ghosh S, Simmons DL, Tempst P, Liou H-C, Baltimore D, Bose HR Jr. (1992) Rel-associated pp40: an inhibitor of the rel family of transcription factors. Science 253: 1268–1271.

    Article  Google Scholar 

  61. Kerr LD, Inoue J-i, Davis N, Link E, Baeuerle PA, Bose HR Jr, Verma IM (1991) The Rel-associated pp40 protein prevents DNA binding of Rel and NF-κB: relationship with IκBβ and regulation by phosphorylation. Genes Dev 5:1464–1476.

    Article  PubMed  CAS  Google Scholar 

  62. Inoue J-I, Kerr LD, Rashid D, Davis N, Bose HR Jr, Verma IM (1992) Direct association of pp40/IκBβ with rel/NF-κB transcription factors: role of ankyrin repeats in the inhibition of DNA binding activity. Proc Natl Acad Sci. USA 89:4333–4337.

    Article  PubMed  CAS  Google Scholar 

  63. Tung HYM, Bargmann WJ, Lim MY, Bose HR Jr (1988) The v-rel oncogene product is complexed to a 40-kDa phosphoprotein in transformed lymphoid cells. Proc Natl Acad Sci. USA 85:2479–2483.

    Article  PubMed  CAS  Google Scholar 

  64. Kochel T, Mushinski JF, Rice NR (1991) The v-rel and c-rel proteins exist in high molecular weight complexes in avian and murine cells. Oncogene 6:615–626.

    PubMed  CAS  Google Scholar 

  65. Isoda K, Roth S, Nusslein-Volhard C (1992) The functional domains of the Drosophila morphogen dorsal: evidence from the analysis of mutants. Genes Dev 6:619–630.

    Article  PubMed  CAS  Google Scholar 

  66. Ohno H, Takimoto G, McKeithan TW (1990) The candidate proto-oncogene bcl3 is related to gene implicated in cell lineage determination and cell cycle control. Cell 60:991–997.

    Article  PubMed  CAS  Google Scholar 

  67. Hatada EN, Nieters A, Wulczyn FG, Naumann M, Meyer R, Nucifora G, McKeithan TW, Scheidereit C (1992) The ankyrin repeat domains of the NF-κB precursor p105 and the protooncogene bcl-3 act as specific inhibitors of NF-κB DNA binding. Proc Natl Acad Sci. USA 89:2489–2493.

    Article  PubMed  CAS  Google Scholar 

  68. Richardson PM, Gilmore TD (1991) vRel is an inactive member of the Rel family of transcriptional activating proteins. J Virol 65:3122–3130.

    PubMed  CAS  Google Scholar 

  69. Gilmore TD (1991) Malignant transformation by mutant Rel proteins. Trends Gen 7:318–322.

    CAS  Google Scholar 

  70. Capobianco AJ, Chang D, Mosialos G, Gilmore TD (1992) p105, the NF-κB p50 precursor protein, is one of the cellular proteis complexed with the v-rel oncoprotein in transformed chicken cells. J Virol 66:3758–3767.

    PubMed  CAS  Google Scholar 

  71. Lu D, Thompson JD, Gorski GK, Rice R, Mayer MG, Yunis JJ (1991) Alterations at the rel locus in human lymphoma. Oncogene 6:1235–1241.

    PubMed  CAS  Google Scholar 

  72. van Krieken JHJM, McKeithan TW, Raghoebier S, Medeiros J, Kluin PM, Raffeld M (1990) Chromosomal translocation t(4:19) as indicated by bcl-3 rearrangment is a rare phenomenon in non-HodgKin’s lymphoma and chronic lymphocytic leukemia: A molecular genetic analysis of 176 cases. Leukemia 4:811–812.

    PubMed  Google Scholar 

  73. Narayanan R, Klement JF, Ruben SM, Higgins A, Rosen CA (1992) Identification of a naturally occurring transforming variant of the p65 subunit of NF-κB. Science 256:367–370.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bours, V. et al. (1992). Lymphocyte Activation and the Family of NF-κB Transcription Factor Complexes. In: Potter, M., Melchers, F. (eds) Mechanisms in B-Cell Neoplasia 1992. Current Topics in Microbiology and Immunology, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77633-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77633-5_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77635-9

  • Online ISBN: 978-3-642-77633-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation