Chemoembolisation in Regional Chemotherapy

  • Conference paper
Drug Delivery in Cancer Treatment II

Part of the book series: ESO Monographs ((ESO MONOGRAPHS))

Abstract

Metastases from primary gastrointestinal cancers to the liver contribute to the morbidity and mortality of up to 25% of all cancer patients. The prognosis of patients with liver metastases from a primary tumour in colon or rectum is poor, i.e., 70% of them will die within one year and at two years only 8–10% remain alive [1]. Surgical resection is the only current means of achieving a cure for unilobar liver colorectal metastases resulting in survival times of more than 5 years. Despite recent advances in early diagnosis and general patient care, less than 5% of all cases of colorectal cancer metastatic to liver and about 10% of all primary hepatocellular carcinomas are truly resectable for cure [1–4]. As extensive trials with systemic chemotherapy and hepatic arterial occlusion, either by ligation or by embolisation, have yielded disappointing response rates, the treatment of liver metastases still constitutes a major oncologic challenge [5,6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Whitely HW Jr: Advanced colon and rectum cancer. In: Stearns M (ed) Neoplasms of the Colon, Rectum and Anus. Wiley, New York 1980 pp 101–113

    Google Scholar 

  2. Fortner JG, Silva JS, Cox EB et al: Multivariate analysis of a personal series of 247 patients with liver metastases from colorectal cancer. Ann Surg 1984 (199): 317–324

    Article  PubMed  CAS  Google Scholar 

  3. Russell AH, Peltom J, Regeis CE et al: Adenocarcinoma of the colon: an autopsy study with implications for new therapeutic strategies. Cancer 1985 (56): 1446–1451

    Article  PubMed  CAS  Google Scholar 

  4. Bragg DG: Angiography of hepatic neoplasms: a review. Int J Radiat Oncol Biol Phys 1976 (1): 965–971

    Article  PubMed  CAS  Google Scholar 

  5. Ackerman NB: The blood supply of liver metastases. In: Weiss L, Gilbert HA (eds) Liver Metastasis. G.K. Hall Med Publ Boston 1982 pp 96–125

    Google Scholar 

  6. Kemeny N: Role of chemotherapy in the treatment of colorectal carcinoma. Sem Surg Oncol 1987 (3): 190–214

    Article  CAS  Google Scholar 

  7. Moertel CG: Chemotherapy of gastrointestinal cancer. N Engl J Med 1978 (229): 1049–1052

    Article  Google Scholar 

  8. Labianca R, Pancera G, Beretta GD et al: Advanced colorectal cancer: polychemotherapy with cisplatin (CDDP) and 5FU vs 5FU alone. Results of a randomized study. Proc ECCO 1987 (4): A162

    Google Scholar 

  9. Windschill H, Scott M, Schutt A et al: Randomized phase II studies in advanced colorectal carcinoma: A North Central Cancer Treatment Group Study. Cancer Treat Rep 1983 (67): 1001–1008

    Google Scholar 

  10. Daly JM, Kemeny N. Therapy of colorectal hepatic metastases. Important Adv Oncol 1986: 251–268

    Google Scholar 

  11. Bedikian AY: Regional and systemic chemotherapy for advanced colorectal cancer. Dis Colon Rectum 1983 (26): 327–332

    Article  PubMed  CAS  Google Scholar 

  12. Lokich JJ, Bothe A, Zipoli T et al: Constant infusion schedule for adriamycin: A phase l-ll clinical trial of a 30-day schedule by ambulatory pump delivery system. J Clin Oncol 1983 (1): 24–28

    PubMed  CAS  Google Scholar 

  13. Petrelli N, Herrora L, Stulc J et al: A phase III study of 5-fluorouracil (5-FU) versus 5-FU + methotrexate (MTX) versus 5-FU + high dose leucovorin (CF) in metastatic colorectal adenocarcinoma. Proc ASCO 1986 (5): 78

    Google Scholar 

  14. Chlebowski RT, Paroly WI, Pugh RP et al: Adriamycin given as a weekly schedule without a loading dose: clinically effective with reduced incidence of cardiac toxicity. Cancer Treat Rep 1980 (64): 47–51

    PubMed  CAS  Google Scholar 

  15. Benjamin RS, Wiernik PH, Bachur WR: Adriamycin chemoterapy-efficacy, safety and pharmacologic basis of an intermittent single high dosage schedule. Cancer 1974 (33): 19–27

    Article  PubMed  CAS  Google Scholar 

  16. Cooper KR, Hough WK: Prospective study of the pulmonary toxicity of continuous infused bleomycin. Cancer Treat Rep 1981 (65): 419–425

    PubMed  CAS  Google Scholar 

  17. Lokich JJ: Phase II study of cisdiamminedichloroplatinum (II) administered as a constant five-day infusion. Cancer Treat Rep 1980 (64): 905–908

    PubMed  CAS  Google Scholar 

  18. Eksborg S, Cedermark BJ, Strandler H-S Intrahepatic and intravenous administration of adriamycin-a comparative pharmacokinetic study in patients with malignant liver tumours. Med Oncol Tumor Pharmacother 1985 (2): 47–54

    PubMed  CAS  Google Scholar 

  19. Stephens FO: Pharmacokinetics of intra-arterial chemotherapy Recent Results Cancer Res 1983 (86): 1–12

    PubMed  CAS  Google Scholar 

  20. Campbell TN, Howell SB, Pfeifle CE et al: Clinical pharmacokinetics of intraarterial cisplatin in humans. J Clin Oncol 1983 (1): 755–762

    PubMed  CAS  Google Scholar 

  21. Lokich JJ: Introduction to the concept and practice of infusion chemotherapy In: Lokich JJ (ed) Cancer Chemotherapy by Infusion. Precept Press Inc, Chicago 1987 pp 3–11

    Chapter  Google Scholar 

  22. Chen H-SG, Gross JF: Intra-arterial infusion of anticancer drugslheoretic aspects of drug delivery and review of responses. Cancer Treat Rep 1980 (64): 31–40

    PubMed  CAS  Google Scholar 

  23. Ensminger WD, Gyves JW: Pharmacologic studies of hepatic intra-arterial chemotherapy. Dev Oncol 1985 (30): 237–245

    Google Scholar 

  24. Kemeny N, Daly J, Reichman B et al: Intrahepatic or systemic infusion of fluorodeoxyuridine in patients with liver metastases from colorectal carcinoma. A randomized trial. Ann Intern Med 1987 (107): 459–465

    PubMed  CAS  Google Scholar 

  25. Hohn D, Stagg R, Friedman M et al: The NCOG randomized trial of intravenous (iv) vs hepatic arterial (IA) FUDR for colorectal cancer metastatic to the liver. Proc ASCO 1987 (6): A333.

    Google Scholar 

  26. Posner MP, Belliveau JF, Weitberg AB et al: Continuous infusion cisplatinum and bolus 5-fluorouracil in colorectal carcinoma. Cancer Treat Rep 1987 (71): 975–977

    PubMed  CAS  Google Scholar 

  27. Lee Y-TN: Systemic and regional treatment of primary carcinoma of the liver. Cancer Treat Rev 1977 (4): 195–212

    Article  PubMed  CAS  Google Scholar 

  28. Patt YZ, Boddie AW, Charnsangavej C et al: Hepatic arterial infusion with floxuridine and cisplatin: overriding importance of antitumor effect versus degree of tumor burden as determinants of survival among patients with colorectal cancer. J Clin Oncol 1986 (4): 1356–1364

    PubMed  CAS  Google Scholar 

  29. Patt YZ, Charnsangavej C, Boddie AW et al: Regional-arterial therapy embolization in the management of various stages of colon cancer. Dev Oncol 1985 (30): 341–355

    Google Scholar 

  30. Sigurdson ER, Ridge JA, Kemeny N et al: Tumor and liver drug uptake following hepatic artery and portal vein infusion. J Clin Oncol 1987 (5): 1836–1840

    PubMed  CAS  Google Scholar 

  31. Stribley KV, Gray BN, Chmiel RL et al: Internal radiotherapy for metastases II: The blood supply to hepatic metastases. J Surg Res 1983 (34): 25–32

    Article  PubMed  CAS  Google Scholar 

  32. Collins JM: Pharmacologic rationale for regional drug delivery. J Clin Oncol 1984 (2): 498–504

    PubMed  CAS  Google Scholar 

  33. Ensminger WD, Gyves JW: Regional chemotherapy of neoplastic diseases. Pharmacol Ther 1983 (21): 277–293

    Article  PubMed  CAS  Google Scholar 

  34. Ensminger WD, Rosowski A, Raso V et al: A clinical-pharmacological evaluation of hepatic arterial infusions of 5-fluoro-2-deoxyuridine and 5-fluorouracil. Cancer Res 1978 (38): 3784–3792

    PubMed  CAS  Google Scholar 

  35. Taylor I, Bennett R, Sheriff S: The blood supply of colorectal metastases. Br J Cancer 1979 (390): 749–756

    Google Scholar 

  36. Sasaki Y, Imaoka S, Hasegawa Y et al: Distribution of arterial blood flow in human hepatic cancer during chemotherapy-Examination by short-lived 81mKr. Surgery 1985 (97): 409–414

    PubMed  CAS  Google Scholar 

  37. Dingemans KP: B16 metastasis in mouse liver and lung II. Morphology. Invasion Metastasis 1988 (8): 87–102

    PubMed  CAS  Google Scholar 

  38. Jain RK: Determinants of tumour blood flow: a review. Cancer Res 1988 (48): 2641–2658

    PubMed  CAS  Google Scholar 

  39. Blanchard RJ, Grotenhuis I, La Fave JW et al: Blood supply to hepatic V2 carcinoma implants as measured by radioactive microspheres. Proc Soc Exp Biol Med 1965 (118): 465–468

    PubMed  CAS  Google Scholar 

  40. Gyves JW, Zeissman HA, Ensminger WD et al: Definition of hepatic tumor microcirculation by single photon emission computerised tomography (SPECT). J Nucl Med 1984 (25): 972–977

    PubMed  CAS  Google Scholar 

  41. Burger JJ, McVie JG: Microspheres for tumour targeting of cytostatic drugs. Pharm Weekbl Sci Ed 1985 (7): 27

    Google Scholar 

  42. McVie JG, Hoefnagel CA, Burger JJ: Tumortargeting of cytostatic compounds using intra-arterial biodegradable microspheres. Annual Report 1985. Netherlands Cancer Institute, Amsterdam 1985 pp 83–84

    Google Scholar 

  43. McVie JG, Burger JJ, Hoefnagel C, Tomlinson E: The use of microspheres in the treatment of liver metastases. In: Van de Velde CJH, Sugarbaker PH (eds) Liver Metastasis; Basic Aspects, Detection and Management. Martinus Nijhoff Publ Dordrecht 1984 pp 313–323

    Google Scholar 

  44. Civalleri D, Scopinaro G, Simoni G et al: Starch microspheres-induced arterial flow redistribution after occlusion of replaced hepatic arteries in patients with liver metastases. Cancer 1986 (58): 2151–2156

    Article  PubMed  CAS  Google Scholar 

  45. Noteborn HPJM, Varossieau F, Blanken G et al: Clinical pharmacokinetics of cisplatin in intraarterial hepatic carrier-mediated delivery in treatment of metastatic liver cancer. In: Heller J (ed) Proc 15th Int Symp Controlled Release Bioactive Materials, Basle 1988, pp 127–128

    Google Scholar 

  46. Merkel C, Cagol PP, Da Pian PP et al.: Blood flow of experimental liver metastases in rat as evaluated by the locally injected 133-Xenon washout. Res Exp Med 1985 (185): 207–215

    Article  CAS  Google Scholar 

  47. Burger JJ, Tomlinson E, McVie JG: Microparticles intended for microvascular blockage. Drug incorporation and release. In: Buri P, Gumma A (eds) Drug Targeting. Elsevier Sci Publ Amsterdam 1985 pp 81–94

    Google Scholar 

  48. Burgess DJ, Davis SS, Tomlinson E: Potential use of albumin microspheres as a drug delivery system. I. Preparation and in vitro release of steroids. Int Pharm 1987 (39): 129–136

    Article  CAS  Google Scholar 

  49. Widder KJ, Senyei AE: Magnetic microspheres: A vehicle for selective targeting of drugs. Pharm Ther 1983 (20): 377–395

    Article  CAS  Google Scholar 

  50. Widder KJ, Flouret G, Senyei AE: Magnetic microspheres: Synthesis of a novel parenteral drug carrier. J Pharm Sci 1979 (68): 79–82

    Article  PubMed  CAS  Google Scholar 

  51. Sugibayashi K, Morimoto Y, Nadai T et al: Drug- carrier property of albumin microspheres in chemotherapy. II. Preparation and tissue distribution in mice of microsphere entrapped 5-fluorouracil. Chem-Pharm Bull 1979 (27): 204–209

    PubMed  CAS  Google Scholar 

  52. Rettenmaier MA, Stutton JA, Berman ML et al: Treatment of a syngenic rat tumor with magnetically responsive albumin microspheres labeled with doxorubicin or protein A. Gynecol Oncol 1987 (27): 34–43

    Article  PubMed  CAS  Google Scholar 

  53. Aronsen KF, Hellekant C, Holmberg J et al: Controlled blocking of hepatic artery flow with enzymatically degradable microspheres combined with oncolytic drugs. Eur Surg Res 1979 (11): 99–106

    Article  PubMed  CAS  Google Scholar 

  54. Dakhil S, Ensminger WD, Cho K et al: Improved regional selectivity of hepatic arterial BCNU with degradable microspheres. Cancer 1982 (50): 631–635

    Article  PubMed  CAS  Google Scholar 

  55. Lindell B, Aronson K-F, Nosslin A et al: Studies in pharmacokinetics and tolerance of substances temporarily retained in the liver by microspheres embolization. Ann Surg 1978 (187): 95–99

    Article  PubMed  CAS  Google Scholar 

  56. Tuma RF: The use of degradable starch microspheres for transient occlusion of blood flow and for drug targetingf to selected tissues. In: Davis SS, Ilium L, McVie JG, Tomlinson E (eds) Microspheres and Drug Therapy. Elsevier Sci Publ Amsterdam 1984 pp 189–203

    Google Scholar 

  57. Tuma RF, Forsberg JO, Agerup B: Enhanced uptake of actinomycin D in the dog kidney by simultaneous injection of degradable starch microspheres into the renal artery. Cancer 1982 (50): 1–5

    Article  PubMed  CAS  Google Scholar 

  58. Kato T, Nemoto R: Microencapsulation of Mitomycin C for intra-arterial infusion chemotherapy. Proc Jpn Acad 1978 (54): 413–417

    Article  CAS  Google Scholar 

  59. Kato T, Unno K, Goto A: Ethylcellulose microcapsules for selective drug delivery. Meth Enzymol 1985 (112): 139–150

    Article  PubMed  CAS  Google Scholar 

  60. Spendlehauer G, Vert M, Benoit JP et al: Biodegradable cisplatin microspheres prepared by the solvent evaparation method: morphology and release characteristics. J Control Rel 1988 (in press)

    Google Scholar 

  61. Spendlehauer G, Veillard M, Benoit JP: Formation and characterization of cisplatin loaded poly(d,l-lactide) microspheres for chemoembolization. J Pharm Sci 1986 (75): 750–755

    Article  Google Scholar 

  62. Tabata Y, Ikada Y: Activation of macrofage in vitro to acquire antitumor activity by a muramyl dipeptide derivative encapsulated in microspheres composed of lactide copolymer. J Control Rel 1987 (6): 189–204

    Article  CAS  Google Scholar 

  63. Benita S, Benoit JP, Puisieux C et al: Characterization of drug-loaded poly(dl-lactide) microspheres. J Pharm Sci 1984 (73): 1721–1724

    Article  PubMed  CAS  Google Scholar 

  64. Bodmeier R, McGinity JW: The preparation and evaluation of drug-containing poly(dl-lactide) microspheres formed by the solvent evaporation method. Pharm Res 1987 (4): 465–471

    Article  PubMed  CAS  Google Scholar 

  65. Juni K, Ogata J, Matsui N et al: Control of release rate of bleomycin from polylactic acid microspheres by additives. Chem Pharm Bull 1985 (33): 1609–1614

    PubMed  CAS  Google Scholar 

  66. Juni K, Ogata J, Matsui N et al: Modification of the release rate of aclarubicin from polylactic acid microspheres by using additives. Chem Pharm Bull 1985 (33) 1734–1738

    PubMed  CAS  Google Scholar 

  67. Juni K, Nakano M, Kubota M: Controlled release of aclarubicin, an anticancer antibiotic, from poly-b- hydroxybutyric acid microspheres. J Control Rel 1986 (4): 25–32

    Article  CAS  Google Scholar 

  68. Kubota M, Nakano M, Juni K: Mechanism of enhancement of the release rate of aclarubicin from poly-b-hydroxybutyric acid microspheres by fatty 85 acid esters. Chem Parm Bull 1988 (36): 333–337

    CAS  Google Scholar 

  69. Lenearts V, Couvreur P, Christiaens-Leyh D et al: Degradation of poly(isobutylcyanoacrylate) nanoparticles. Biomaterials 1984 (5): 65–68

    Article  Google Scholar 

  70. Gipps EM, Arshady R, Kreuter J et al: Distribution 86 of polyhexyl cyanoacrylate nanoparticles in nude mice bearing human osteosarcoma. J Pharm Sci 1986 (75): 256–258

    Article  PubMed  CAS  Google Scholar 

  71. Douglas SJ, Ilium L, Davis SS: Poly(butyl 2-cyanoacrylate) nanoparticles with differing surface 87 charges. J Control Rel 1986 3: 15–23

    Article  CAS  Google Scholar 

  72. Ilium L, Kahn MA, Mak E et al: Evaluation of carrier capacity and release characteristics for poly(butyl 88 2-cyanoacrylate) nanoparticles. Int J Pharm 1986 (30): 17–28

    Article  Google Scholar 

  73. Douglas SJ, Davis SS, Ilium L: Nanoparticles in drug delivery. Crit Rev Ther Drug Carrier Syst 1987 (3): 233–261

    PubMed  CAS  Google Scholar 

  74. Konno T: Targeting chemotherapy of hepatocellular carcinoma by arterial administration of anticancer agents dissolved in lipiodol. Gan To Kagaku Ryoho 1987 (14): 373–380

    PubMed  CAS  Google Scholar 

  75. Konno T, Ohtsuka N, Yamasaki K et al: Targeting of anticancer chemotherapy utilizing the characteristic nature of the neovasculature of solid tumors. Gan To Kagaku Ryoho 1986 (13): 1448–1455

    PubMed  CAS  Google Scholar 

  76. Ohtsuka N, Konno T, Miyauchi Y et al: Anticancer effects of arterial administration of the anticancer agent SMANCS with lipiodol on metastatic lymph nodes. Cancer 1987 (59): 1560–1565

    Article  PubMed  CAS  Google Scholar 

  77. Konno T, Maeda H, Iwai S et al: Selective targeting of anti-cancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast medium. Cancer 1984 (54): 2367–2374

    Article  PubMed  CAS  Google Scholar 

  78. Tomlinson E Microsphere delivery systems for drug targeting and controlled release. Int J Pharm Tech Prod Mft 1983 (4): 49–57

    CAS  Google Scholar 

  79. Ilium L, Davis SS: Passive and active targeting using coloidal drug carrier systems. In: Buri P, Gumma A (eds) Drug Targeting. Elsevier Sci Publ Amsterdam 1985 pp 65–80

    Google Scholar 

  80. Widder KJ, Senyei AE, Ranney DF: Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumour agents. Adv Pharmacol Chemother 1979 (16): 213–271

    Google Scholar 

  81. Burger JJ, Tomlinson E, De Roo JE et al: Technetium-99m labeling of albumin microspheres intended for drug targeting. Meth Enzymol 1985 (112): 43–56

    Article  PubMed  CAS  Google Scholar 

  82. Ilium L, Davis SS: Effect of the nonionic surfactant Poloxamer 338 on the fate and deposition of polystyrene microspheres following intravenous administration. J Pharm Sci 1983 (72): 1086–1089

    Article  Google Scholar 

  83. Ilium L, Davis SS: The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (Poloxamer 338). FEBS Lett 1984 (167): 79–82

    Article  Google Scholar 

  84. Wilkins DJ, Meyer PA: Studies on the relationship between the electrophoretic properties of colloids and their blood clearance and organ distribution in the rat. Brit J Exp Path 1966 (47): 568–576

    PubMed  CAS  Google Scholar 

  85. Morimoto Y, Sugibayashi K, Okumura M et al: Biomedical applications of magnetic fluids. I. Magnetic guidance of ferro-colloid entrapped albumin microspheres for site-specific drug delivery in vivo. J Pharm Dyn 1981 (4): 624–631

    CAS  Google Scholar 

  86. Artursson P, Laakso T, Edman P: Acrylic microspheres in vivo. IX. Blood elimination kinetics and organ distribution of microparticles with different surface characteristics. J Pharm Sci 1983 (72): 1415–1420

    Article  Google Scholar 

  87. Salky NK, Di Luzio NR, Levin AG et al: Phagocytic activity of the reticuloendothelial system in neoplastic disease. J Lab Clin Med 1967 (70): 393

    PubMed  CAS  Google Scholar 

  88. Schroeder U, Stahl A, Salford LG: In: Davis SS, Ilium L, McVie JG, Tomlinson E (eds) Microspheres and Drug Therapy. Elsevier Sci Publ Amsterdam 1984 p 427

    Google Scholar 

  89. Ranney DF: Pulmonary targeting with ferromagnetised albumin microsphere. Science 1985 (227): 182–183

    Google Scholar 

  90. Kramer PA, Burnstein T: Phagocytosis of microspheres containing an anticancer agent by tumour cells in vitro. Life Sci 1976 (19): 515–520

    Article  PubMed  CAS  Google Scholar 

  91. Kramer PA: Albumin microspheres as vehicles for achieving specificity in drug deliveries. J Pharm Sci 1974 (63): 1646–1647

    Article  PubMed  CAS  Google Scholar 

  92. Grislain P, Couvreur P, Lenaerts V et al: Pharmacokinetics and distribution of a biodegradable drug-carrier. Intern J Pharmaceut 1983 (15): 335–345515: 335–345

    Article  CAS  Google Scholar 

  93. Goldberg JA, Kerr DJ, Willmott N et al: Pharmacokinetcs and pharmacodynamics of loco-regional 5-Fluorouracil (5-FU) in advanced colorectal liver metastases Br J Cancer 1988 (57): 186–189

    Article  PubMed  CAS  Google Scholar 

  94. Willmott N: Chemoembolization in regional cancer chemotherapy: a rationale Cancer Treatm Rev 1987 (14): 143–156

    Article  CAS  Google Scholar 

  95. Widder KJ, Green R (eds): Drug and Enzyme Targeting. Meth Enzymol. Academic Press Inc, Orlando 1985(112)

    Google Scholar 

  96. Freeman AI, Mayhew E: Targeted drug delivery. Cancer 1986 (58): 573–583

    Article  PubMed  CAS  Google Scholar 

  97. Burgener FA, Gothlin JH: Angiography, microangiographic and hemodynamic evaluation of artery embolization in the rabbit. Invest Radiol 1978 (13): 306–312

    Article  PubMed  CAS  Google Scholar 

  98. Edman P, Artursson P, Laakso T et al: Poly(cryl)-starch microspheres as drug carrier systems. In: Ilium L, Davis SS (eds) Polymers in Controlled Drug Delivery. Wright, Bristol 1987 pp 87–98

    Google Scholar 

  99. Artursson P, Edman P, Laakso T et al: Characterization of polyacryl starch microparticles as carriers for proteins and drugs. J Parm Sci 1984 (73): 1507–1513

    Article  CAS  Google Scholar 

  100. Edman P, Ekman B and Sjoholm I: Immobilization of proteins in microspheres of biodegradable polyacryldextrans. J Pharm Sci 1980 (69): 838–842

    Article  PubMed  CAS  Google Scholar 

  101. Chuang VP, Tsai C-C, Soo C-S et al.: Experimental canine hepatic artery embolization with polyvinyl alcohol foam particles. Radiology 1982 (145): 21–25

    PubMed  CAS  Google Scholar 

  102. Stridbeck H, Lorelius L-E, Pritle TE: Development of colloidal circulation following distal embolization of hepatic artery in pigs. Cardiovasc Intervent Radiol 1984 (7): 240–244

    Article  PubMed  CAS  Google Scholar 

  103. Ilium L, Davis SS (eds): Polymers in controlled drug delivery. Wright, Bristol 1987

    Google Scholar 

  104. Davis SS, Ilium L, McVie JG, Tomlinson E (eds): Microspheres and Drug Therapy. Elsevier Sci Publ, Amsterdam 1984

    Google Scholar 

  105. Gupta PK, Hung CT, Perrier DG: Albumin microspheres. I. Release characteristics of adriamycin. Int J Pharm 1986 (33): 137–146

    Article  CAS  Google Scholar 

  106. Gupta PK, Hung CT, Perrier DG: Albumin microspheres. II. Effect of stabilization temperature on the release of adriamycin. Int J Pharm 1986 (33): 147–153

    Article  CAS  Google Scholar 

  107. Gupta PK, Gallo JM, Hung CT et al: Influence of stabilization temperature on the entrapment of adriamycin in albumin microspheres. Drug Dev Ind Pharm 1987 (13): 1471–1482

    Article  CAS  Google Scholar 

  108. Widder KJ, Senyei AE, Sears B: Experimental methods in cancer therapeutics. J Pharm Sci 1982 (71): 379–387

    Article  PubMed  CAS  Google Scholar 

  109. Senyei AE, Driscoll CF, Widder KJ: Biophysical drug targeting; Magnetically responsive albumin microspheres. Meth Enzymol 1985 (112): 56–67

    Article  PubMed  CAS  Google Scholar 

  110. Longo WE, Iwata H, Lindheimer TA et al: Preparation of hydrophilic albumin microspheres using polymeric dispersing agents. J Pharm Sci 1982 (71): 1323–1328

    Article  PubMed  CAS  Google Scholar 

  111. Yapel AF Albumine microspheres: Heat and chemical stabilization. Method Enzymol 1985 (112): 3–18

    Article  CAS  Google Scholar 

  112. McArdle CS, Lewi H, Hansell D et al: Cytotoxic- loaded albuminmicrospheres: a novel approach to regional chemotherapy. Br J Surg 1988 (75): 132–134

    Article  PubMed  CAS  Google Scholar 

  113. Burger JJ, Tomlinson E, Mulder EMA et al: Albumin microsheres for intra-arterial tumour targeting. I. Pharmaceutical aspects. Int J Pharm 1985 (23): 333–334

    Article  CAS  Google Scholar 

  114. Chen Y, Willmott N, Anderson J et al: Comparison of albumin and casein microspheres as a carrier for doxorubicin. J Pharm Pharmacol 1987 (39): 978–985

    Article  PubMed  CAS  Google Scholar 

  115. Rhodos BA, Zolle I, Buchman JW et al: Radioactive albumin microspheres. Radiology 1983 (92): 1453–1460

    Google Scholar 

  116. Lee TK, Sokolski JD, Royer GP: Serum albumin beads: An injectible, biodegradable system for the sustained release of drugs. Science 1981 (213): 233–235

    Article  PubMed  CAS  Google Scholar 

  117. Willmott N, Cummings J, Stuart JFB et al: Adriamycin loaded albumin microspheres: Preparation, in vivo distribution and release in the rat. Biopharmacol Drug Dispos 1985 (6): 91

    Article  CAS  Google Scholar 

  118. Bissery M-C, Valeriote F, Thies C: In: Davis SS, Ilium L, McVie JG, Tomlinson E (eds) Microspheres and Drug therapy. Elsevier Sci Publ, Amsterdam 1984 pp 217–229

    Google Scholar 

  119. Lindberg B, Lote K, Teder H: Biodegradable starch microspheres-A new medical tool. In: Davis SS, Ilium L, McVie JG, Tomlinson E (eds) Microspheres in Drug Therapy. Elsevier Sci Publ Amsterdam 1984 pp 153–188

    Google Scholar 

  120. Oppenheim RC: Gelatin microspheres as drug carrier systems. In: Ilium L, Davis SS (eds) Polymers in Controlled Drug Delivery. Wright, Bristol 1987 pp 73–86

    Google Scholar 

  121. Gyves JW: Selective therapy of hepatic cancers using microspheres. In: Rosenthal CJ, Rotman M (eds) Plenum Press New York 1986 pp 67–69

    Google Scholar 

  122. Ensminger WD: Degradable starch microspheres. Dev Oncol 1984 (26): 219–226

    Google Scholar 

  123. Sezaki H, Hashida M, Muranashi S: In: Optimization of drug delivery Munksgaard Copenhagen 1982 pp 316

    Google Scholar 

  124. Artursson P, Sjoholm I: Effect of opsonins on the macrophage uptake of polyacrylstarch microparticles. Int J Pharm 1986 (32): 165–170

    Article  CAS  Google Scholar 

  125. Ratcliffe JH, Hunneyball IM, Smith A et al: Preparation and evaluation of biodegradable polymeric systems for the intra-articular delivery of drugs. J Pharm Pharmacol 1984 (36): 431–436

    Article  PubMed  CAS  Google Scholar 

  126. Miller RA, Brady JM, Cutright DE: Degradation rates of oral resorbable implants (polyactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mat Res 1977 (11): 711–719

    Article  CAS  Google Scholar 

  127. Senior DJ, Dawes EA: Poly-b-hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijerinckii. Biochem J 1971 (125): 55–56

    PubMed  CAS  Google Scholar 

  128. Bissery MC, Valeriote FA, Thies C: Therapeutic efficacy of CCNU-loaded microspheres prepared from poly(d,l)lactide (PLA) or poly-B- hydroxybutyrate (PHB) against Lewis lung (LL) carcinoma. Proc Annu Meet Am Assoc Cancer Res 1985 (26): 355

    Google Scholar 

  129. Madoulé P, Trampont P, Roche A: Chemoembolization: principles and perspectives. J Microencaps 1984 (1): 21–25

    Article  Google Scholar 

  130. Sanders LM, McRae GI, Vitale KM et al: Controlled delivery of an LH-RH analogue from biodegradable injectable microspheres. J Control Rel 1985 (2): 187–195

    Article  CAS  Google Scholar 

  131. Sanders LM, Kent JS, McRae GI et al: Controlled release of a luteinizing hormone-releasing hormone analogue from poly(d,l-lactide-co-glycolide) microspheres. J Pharm Sci 1984 (73): 1294–1297

    Article  PubMed  CAS  Google Scholar 

  132. Makino K, Arakawa M, Kondo T: Preparation and in vitro degradation properties of polylactide microcapsules. Chem Pharm Bull 1985 (33): 1195–1201

    PubMed  CAS  Google Scholar 

  133. Maeda H, Konno T, Iwai K et al: Tumor selective drug delivery with lipid contrast medium (SMANCS/LIPIODOL): sustained antitumor effect, enhanced diagnostic value and quantification of dosage regiman. Gan To Kagaku Ryoho 1984 (4): 814–826

    Google Scholar 

  134. Iwai K, Maeda H, Konno T: Use of oily contrast medium for selective drug targeting to tumor: enhanced therapeutic effect and X-ray image. Cancer Res 1984 (44): 2115–2121

    PubMed  CAS  Google Scholar 

  135. Maeda H, Konno T: Tumor-targeted chemotherapy with lipid contrast medium and macro molecular anticancer agents theoretical considerations and clinical outcome. Gan To Kagaku Ryoho 1985 (12): 773–782

    PubMed  CAS  Google Scholar 

  136. Iwai K, Maeda H, Konno T et al: Tumor targeting by arterial administration of lipids: rabbit model with VX2 carcinoma in the liver. Anticancer Res 1987 (7): 321–327

    PubMed  CAS  Google Scholar 

  137. Taniguchi H, Yamaguchi T, Takahashi T: Basic study of anti-cancer agents suspended in Lipiodol. Gan To Kagaku Ryoho 1986 (13): 255–260

    PubMed  CAS  Google Scholar 

  138. Chien YW: In: Novel drug delivery systems. Marcel Dekker, New York 1982 p 663

    Google Scholar 

  139. Roorda WE, Bodde HE, De Boer AG et al: Synthetic hydrogels as drug delivery systems. Pharm Weekbl Sci Ed 1986 (8): 165–188

    Article  CAS  Google Scholar 

  140. Hadgraft J, Guy RH: Release and diffusion of drugs from polymers. In: Davis SS, Ilium L (eds) Polymers in Controlled Drug Delivery. Wright, Bristol 1987 pp 99–116

    Google Scholar 

  141. Higuchi T: Rate of release of medicaments from ointment base containing drugs in suspension. J Pharm Sci 1961 (50): 874–875

    Article  PubMed  CAS  Google Scholar 

  142. McVie JG, Meinema HA, Blanken-Aarsen GJ et al: Formulation of poorly water-soluble cytostatic platinum compounds using biodegradable microspheres. VIII.7.3 Annual Report 1987. Netherlands Cancer Institute, Amsterdam 1988 p 98

    Google Scholar 

  143. Yoshioka T, Hashida M, Muranishi S et al: Specific delivery of mitomycin C to the liver, spleen and lung: nano- and microspherical carries of gelatin. Int. J Pharm 1981 (8): 131–141

    Article  Google Scholar 

  144. Boutkan H, Ruevekamp M, Ter Berg RGM et al: Determination of the liver tumor load in colonic carcinoma metastasising to the liver: an experimental study in the rat. Surg Res Comm 1988 (3): 319–325

    Google Scholar 

  145. Teder H, Nilsson B, Jonsson K et al.: Hepatic arterial administration of doxorubicin (adriamycin) with or without degradable starch microspheres: a pharmacokinetic study in man. In: Hansen H (ed) Anthracyclines and Cancer Therapy. Elsevier Medica, Amsterdam 1983 pp 166–174

    Google Scholar 

  146. Nakamura H, Hashimoto T, Taguchi T et al.: Chemoembolization. Gan To Kagaku Ryoho 1987 (14): 1656–1663

    PubMed  CAS  Google Scholar 

  147. Okamoto Y, Konno A, Togawa K et al: Arterial chemoembolization with cisplatin microcapsules. Br J Cancer 1986 (53): 369–375

    Article  PubMed  CAS  Google Scholar 

  148. Morimoto Y, Fujimoto S: Albumin microspheres as drug carriers. Crit Rev Ther Drug Carrier Syst 1985 (2): 19–63

    PubMed  CAS  Google Scholar 

  149. Kato T, Kazunari S, Abe R et al: Clinical trial of intravascular targeted chemotherapy (chemoembolization) with mitomycin C microcapsules. In: Taguchi T, Andrysek O (eds) New Trends in Cancer Chemotherapy with Mitomycin C. Excerpta Medica Ltd Tokyo 1987 pp 158–170

    Google Scholar 

  150. McVie JG, Burger JJ, Hoefnagel C, Tomlinson E: The use of microspheres in the treatment of liver metastases. Rev Oncol 1984 (24): 313–323

    Google Scholar 

  151. Zeissman HA, Thrall JH, Yang PJ et al: Hepatic arterial scintigraphy with Tc-99m-MAA Radiology 1982 (152): 167–172

    Google Scholar 

  152. Charnsangajev C, Carrasco C, Wallace S et al: Hepatic arterial flow distribution with hepatic neoplasms: significance in infusion chemotherapy. Radiology 1987 (165): 71–73

    Google Scholar 

  153. Starkhammer H, Hakansson L, Morales O et al: Effect of microspheres in intra-arterial chemotherapy. A study of arterio-venous shunting and passage od a labelled marker. Med Oncol Tumor Pharmacother 1987 (4): 87–96

    Google Scholar 

  154. Wells JJ, Nostrant TT, Wilson JA et al: Gastroduodenal ulcerations in patients receiving selective hepatic artery infusion chemotherapy. Am J Gastroenterol 1985 (80): 425–429

    PubMed  CAS  Google Scholar 

  155. Willmott N, Cummings J: Increased anti-tumour effect of adriamycin-loaded albumin microspheres is associated with anaerobic bioreduction of drug in tumour tissue. Biochem Pharmacol 1987 (36): 521–526

    Article  PubMed  CAS  Google Scholar 

  156. Wilmott N, Kerr D, Lewi H et al: Tissue localization of adriamycin (ADR) using albumin microspheres. Proc BACR 27th AGM 1987 p 189

    Google Scholar 

  157. Lewi H, Willmott N, Kerr DJ et al: Adriamycin loaded albumin microspheres: a new method of delivering cytotoxic therapy. Br J Surg 1986 (73): 612

    Google Scholar 

  158. Endoh F: Intra-arterial chemoembolization with albumin microspheres including mitomycin C in inoperable hepatic cancer. Nippon Geka Gakkai Zasshi 1987 (88): 584–593

    PubMed  CAS  Google Scholar 

  159. Fujimoto S, Miyazaki M, Endoh F et al: Biodegradable mitomycin C microspheres given intra-arterially for inoperable hepatic cancer with particular reference to a comparison with continuous infusion of mitomycin C and 5-fluorouracil. Cancer 1985 (56): 2404–2410

    Article  PubMed  CAS  Google Scholar 

  160. Workman P: Hypoxic cells and cancer therapy. Cancer Topics 1982 (4): 22–23

    Google Scholar 

  161. Workman P: New trends in targeted cancer chemotherapy. In: Domellöf L (ed) Drug delivery in cancer treatment. European School of Oncology Monograph Series. Springer-Verlag Berlin-New York 1987 pp 77–99

    Google Scholar 

  162. Tanaka Y, Murata T, Yoshida M et al: Enhancement of anti-tumour effects by arterial embolization combined with hyperthermia in the treatment of hepatic tumors. Gan To Kagaku Ryoho 1987 (14): 396–403

    PubMed  CAS  Google Scholar 

  163. Vermorken JB, Van der Vijgh WJF, Klein I et al: Pharmacokinetics of free and total platinum species after short-term infusion of cisplatin. Cancer Treat Reports 1984 (68): 505–513

    CAS  Google Scholar 

  164. Stewart DJ, Benjamin RS, Zimmerman et al: Clinical pharmacology of intraarterial cis-diamminedichloroplatinum (II). Cancer Res 1983 (43): 917–920

    PubMed  CAS  Google Scholar 

  165. Ensminger WD, Gyves JW, Stetson P et al: Phase I study of hepatic arterial degradable starch microspheres and mitomycin. Cancer Res 1985 (45): 4464–4467

    PubMed  CAS  Google Scholar 

  166. Pfeifle CE, Howell SB, Ashburn WL et al: Pharmacologic studies of intra-hepatic chemotherapy with degradable starch microspheres. Cancer Drug Deliv 1986 (3): 1–14

    Article  PubMed  CAS  Google Scholar 

  167. Ensminger WD: Degradable starch microspheres. Dev Oncol 1984 (26): 219–226

    Google Scholar 

  168. Wollner IS, Walker-Andrews SC, Smith JE et al: Phase II study of hepatic arterial degradable starch microspheres and mitomycin. Cancer Drug Deliv 1986 (3): 279–284

    Article  PubMed  CAS  Google Scholar 

  169. Koike S, Fujimoto S, Endoh F et al: Combination intra-arterial chemotherapy with degradable starch microspheres and mitomycin C against inoperable hepatic metastases. Gan To Kagaku Ryoho 1988 (15): 431–435

    PubMed  CAS  Google Scholar 

  170. Itani K, Yoshikawa T, Tainaka K et al: Chemoembolization with degradable starch microspheres in malignant hepatic tumors. Gan To Kagaku Ryoho 1987 (14): 388–395

    PubMed  CAS  Google Scholar 

  171. Parker G, Regelson W: Biodegradable starch microspheres. In: Rosenthal CJ, Rotman M (eds) Clinical applications of continuous infusion chemotherapy and concomitant radiation therapy. Plenum Press, New York 1986 pp 51–66

    Chapter  Google Scholar 

  172. Taguchi T: Clinical results of chemotherapy combined with degradable starch microspheres in a cooperative study. DSM study group in Japan (personal communication)

    Google Scholar 

  173. Wickersman JK, Barrett WP, Furakawa SB et al: An evaluation of the response of the microvasculature in tumours in C3H mice to vasoactive drugs. Bibl Anat 1977 (15): 291

    Google Scholar 

  174. Hammersen F, Endrich B, Messmer K: The fine structure of tumour blood vessels.I. Participation of non-endothelial cells in tumour angiogenesis. Int J Microcirc Clin Exp 1985 (4): 31–43

    PubMed  CAS  Google Scholar 

  175. Burton MA, Gray BN: Distribution of blood flow in experimental hepatic tumours with noradrenaline and propranolol. Br J Cancer 1987 (56): 585–588

    Article  PubMed  CAS  Google Scholar 

  176. Iwaki A, Nagasue N, Kobayashi M et al: Intraarterial chemotherapy with concomittant use of vasoconstrictors for liver cancer. Cancer Treat Rep 1978 (62): 145–146

    PubMed  CAS  Google Scholar 

  177. Kaelin WG, Shrivastav S, Shand DG et al: Effect of verapamil on malignant tissue blood flow in SMT-2A tumor-bearing rats. Cancer Res 1982 (42): 3944–3949

    PubMed  CAS  Google Scholar 

  178. Sasaki Y, Imaoka S, Hasegawa Y et al: Changes in distribution of hepatic blood flow by intraarterial infusion of angiotensin II in human hepatic cancer. Cancer 1985 (55): 311–316

    Article  PubMed  CAS  Google Scholar 

  179. Goldberg JA, Bradnam MS, Kerr DJ et al: Arterio¬venous shunting of microspheres in patients with colorectal liver metastases: errors in assessment due to free pertechnetate and the effect of angiotensin II. Nucl Med Comm 1988 (in press)

    Google Scholar 

  180. Boublil JL, Milano G, Khater R et al: Continuous 5-day regional chemotherapy by 5-fluorouracil in colon carcinoma: pharmacokinetic evaluation. Br J Cancer 1985 (52):15–20

    Article  PubMed  CAS  Google Scholar 

  181. Milano G, Boublil JL, Khater R et al: 5-FU pharmacokinetics during locoregional treatment in patients with colorectal carcinoma. EORTC Symposium on Continuous Infusion Chemotherapy, March 1, 1985. Brussels 1985: A15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noteborn, H.P.J.M., McVie, J.G. (1989). Chemoembolisation in Regional Chemotherapy. In: Domellöf, L. (eds) Drug Delivery in Cancer Treatment II. ESO Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74709-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74709-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74711-3

  • Online ISBN: 978-3-642-74709-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation