K+ Channels: Structure, Function, Regulation, Molecular Pharmacology and Role in Diseased States

  • Conference paper
Molecular Basis of Membrane-Associated Diseases

Abstract

This chapter will describe the molecular pharmacology and biochemistry of three types of K+ channels: the calcium-activated potassium channels. ATP-regulated potassium channels and voltage-sensitive potassium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ashcroft FM, Harrison DE, Ashcroft SJH (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature (London) 312:446–448

    Article  CAS  Google Scholar 

  • Baumann A, Krah-Jentgens I, Müller R, Müller-Holtkamp F, Scidel R, Kecskemethy N, Casai J, Ferras A, Pongs O (1987) Molecular organization of the maternal effect region of the shaker complex of Drosophila: characterization of an IA channel transcript with homology to vertebrate Na+ channel EMBO J 6:3419–3429

    PubMed  CAS  Google Scholar 

  • Bidard JN, Gandolfo G, Mourre C, Gottesman C, Lazdunski M (1987a) The brain response to the bee venom peptide MCD. Activation and desensitization of an hippocampal target Brain Res 418:235–244

    CAS  Google Scholar 

  • Bidard JN, Mourre C, Lazdunski M (1987b) Two potent central convulsant peptides, a bee venom toxin, the MCD peptide, and a snake venom toxin, dendrotoxin I, known to block K+ channels, have interacting receptor sites. Biochem Biophys Res Commun 143:383–389

    Article  PubMed  CAS  Google Scholar 

  • Cherubini E, Ben Ari Y, Gho M, Bidard JN, Lazdunski M (1987) Long-term potentiation of synaptic transmission in the hippocampus induced by a bee venom peptide. Nature (London) 328:70–73

    Article  CAS  Google Scholar 

  • Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic β-cells. Nature (London) 311:271–273

    Article  CAS  Google Scholar 

  • De Weille JR, Schmid-Antonlarehi H, Fosset M, Lazdunski M (1988) ATP-sensitive K+ channels that are blocked by hypoglycemic sulfonylureas in insulin secreting cells are activated by galanin, an hyperglycemic hormone. Proc Natl Acad Sci USA 85:1312–1316

    Article  PubMed  Google Scholar 

  • Dolly JO, Stansfeld CE, Breeze A, Pelchen-Matthews A, Marsh SJ, Brown DA (1987). Neuronal acceptor sub-types for dendrotoxin and their relation to K+ channels. In: Jenner PJ (ed) Neuro-toxins and their pharmacological implications. Raven, New York, pp 81–96

    Google Scholar 

  • Findlay I, Dunne MJ, Petersen OH (1985) ATP-sensitive inward rectifier and voltage-and calcium-activated K+ channels in cultured pancreatic islet cells. J Membrane Biol 88:165–172

    Article  CAS  Google Scholar 

  • Fosset M, Schmid-Antomarchi H, Hugues M, Romey G, Lazdunski M (1984) The presence in pig brain of an endogenous equivalent of apamin, the bee venom peptide which specifically blocks Ca2+-dependent K+ channels. Proc Natl Acad Sci USA 81:7228–7232

    Article  PubMed  CAS  Google Scholar 

  • Fosset M, de Weille JR, Green RD, Schmid-Antomarchi H, Lazdunski M (1988) Antidiabetic sulfonylureas control action potential properties in heart cells via high affinity receptors that are linked to ATP-dependent K+ channels. J Biol Chem 263:7933–7936

    PubMed  CAS  Google Scholar 

  • Habermann E (1972) Bee and wasp venoms. Science 177:314–322

    Article  PubMed  CAS  Google Scholar 

  • Harvey AL, Anderson A (1985) Dendrotoxins: snake toxins that block potassium channels and facilitate neurotransmitter release. Pharmacol Ther 31:33–55

    Article  PubMed  CAS  Google Scholar 

  • Henquin JC, Meissner HP (1982) Opposite effects of tolbutamide and diazoxide on 86Rb+ fluxes and membrane potential in pancreatic β-cells. Biochem Pharmacol 31:1407–1415

    Article  PubMed  CAS  Google Scholar 

  • Hugues M, Duval D, Kitabgi P, Lazdunski M, Vincent JP (1982a) Preparation of a pure monoiodo-derivative of the bee venom neurotoxin apamin and its binding properties to rat brain synapto-somes. J Biol Chem 257:2762–2769

    PubMed  CAS  Google Scholar 

  • Hugues M, Romey G, Duval D, Vincent JP, Lazdunski M (1982b) Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells. Voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sci USA 79:1308–1312

    Article  PubMed  CAS  Google Scholar 

  • Hugues M, Schmid H, Lazdunski M (1982c) Identification of a protein component of the Ca2+-dependent K+ channel by affinity labelling with apamin. Biochem Biophys Res Commun 107:1577–1582

    Article  PubMed  CAS  Google Scholar 

  • Hugues M, Schmid H, Romey G, Duval D, Freiin C, Lazdunski M (1982d) The Ca2+-dependent slow K+ conductance in cultured rat muscle cells: characterization with apamin. EMBO J 9:1039–1042

    Google Scholar 

  • Lazdunski M (1982) Etudes biochimiques du canal sodium voltage-sensible: structure, mécanisme et différenciation. C R Ste Biol 176:123

    CAS  Google Scholar 

  • Lazdunski M (1983) Apamin, a neurotoxin specific for one class of Ca2+-dependent K+ channel. Cell Calcium 4:421–428

    Article  PubMed  CAS  Google Scholar 

  • Miller C, Moczydlowski F, Latorre R, Phillips M (1985) Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature (London) 313:316–318

    Article  CAS  Google Scholar 

  • Mourre C, Cervera P, Lazdunski M (1987) Autoradiographic analysis in rat brain of the postnatal ontogeny of voltage-dependent Na+ channels, Ca2+-dependent K+ channels and slow Ca2+ channels identified as receptors for tetrodotoxin, apamin and (-)desmethoxyverapamil. Brain Res 417:21–32

    Article  PubMed  CAS  Google Scholar 

  • Mourre C, Bidard JN, Lazdunski M (1988a) High affinity receptors for the bee venom MCD peptide. Quantitative autoradiographic localization at different stages of brain development and relationship with MCD neurotoxicity. Brain Res 446:106–112

    Article  PubMed  CAS  Google Scholar 

  • Mourre C, Nehlig A, Lazdunski M (1988b) Cerebral glucose utilization after administration of apamin, a toxin active on Ca2+-dependent K+ channels. Brain Res 451:274–284

    Article  PubMed  CAS  Google Scholar 

  • Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature (London) 305:147–148

    Article  CAS  Google Scholar 

  • Rehm H, Lazdunski M (1988a) Purification and subunit structure of a putative K+ channel identified by its binding properties for dendrotoxin I. Proc Natl Acad Sci USA 85:4919–4923

    Article  PubMed  CAS  Google Scholar 

  • Rehm H, Lazdunski M (1988b) Existence of different populations of the dendrotoxin I binding protein associated with neuronal K+ channels. Biochem Biophys Res Commun 153:231–240

    Article  PubMed  CAS  Google Scholar 

  • Rehm H, Bidard JN, Schweitz H, Lazdunski M (1988) The receptor site for the bee venom MCD peptide. Affinity labeling evidence for a common molecular target for MCD peptide and dendrotoxin I, a snake toxin active on K+ channels. Biochemistry 27:1827–1832

    CAS  Google Scholar 

  • Renaud JF, Desnuelle C, Schmid-Antomarchi H, Hugues M, Serratrice G, Lazdunski M (1986) Expression of apamin receptor in muscles of patients with myotonic muscular dystrophy. Nature (London) 319:678–680

    Article  CAS  Google Scholar 

  • Romey G, Lazdunski M (1984) The coexistence in rat muscle cells of two distinct classes of Ca2+-dependent K+ channels with different pharmacological properties and different physiological functions. Biochem Biophys Res Commun 118:669–674

    Article  PubMed  CAS  Google Scholar 

  • Rorsman P, Trube G (1985) Glucose-dependent K+ channels in pancreatic β-cells are regulated by intracellular ATP. Pflüger’s Arch 405:305–309

    Article  CAS  Google Scholar 

  • Schmid-Antomarchi H, Hugues M, Norman RI, Ellory C, Borsotto M, Lazdunski M (1984) Molecular properties of the apamin-sensitive Ca2+-dependent K+ channel: radiation-inactivation, affinity labelling and solubilization. Eur J Biochem 142:1–6

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Antomarchi H, Renaud JF, Romey G, Hugues M, Schmid A, Lazdunski M (1985) The all-or-none role of innervation in expression of apamin receptor and of apamin-sensitive Ca2+-activated K+ channel in mammalian skeletal muscle. Proc Natl Acad Sci USA 82:2188–2191

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Antomarchi H, Hugues H, Lazdunski M (1986) Properties of the apamin-sensitive Ca2+-activated K+ channel in PC 12 pheochromocytoma cells which hyper-produce the apamin receptor. J Biol Chem 261:8633–8637

    PubMed  CAS  Google Scholar 

  • Schmid-Antomarchi H, de Weille JR, Fosset M, Lazdunski M (1987a) The anti-diabetic sulfonylurea glibenclamide is a potent blocker of the ATP-modulated K+ channel in insulin secreting cells. Biochem Biophys Res Commun 146:21–25

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Antomarchi H, de Weille JR, Fosset M, Lazdunski M (1987b) The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin secreting cells. J Biol Chem 262:15840–15844

    PubMed  CAS  Google Scholar 

  • Seagar MJ, Labbé-Jullié C, Garnier C, Van Rietschoten J, Couraud F (1985) Photoaffinity labeling of components of the apamin-sensitive K+ channel in neuronal membranes. J Biol Chem 260:3895–3898

    PubMed  CAS  Google Scholar 

  • Taylor JW, Bidard JN, Lazdunski M (1984) The characterization of high affinity binding sites in rat brain for the mast cell degranulating peptide from bee venom using the purified monoiodinated peptide. J Biol Chem 259:13957–13967

    PubMed  CAS  Google Scholar 

  • Tempel BL, Papazian D, Schwartz T, Jan Y, Jan L (1987) Sequence of probable potassium channel component encoded at shaker locus of Drosophila. Science 237:770–775

    Article  PubMed  CAS  Google Scholar 

  • Trube G, Hescheler J (1984) Inward-rectifying channels in isolated patches of the heart cell membrane: ATP-dependent and comparison with cell-attached patches. Pflüger’s Arch 401:178–184

    Article  CAS  Google Scholar 

  • Van Renterghem C, Romey G, Lazdunski M (1988) Vasopressin modulates the spontaneous electrical activity in aortic cells (A7r5) by acting on three different types of ionic channels. Proc Natl Acad Sci USA 85:9365–9369

    Article  Google Scholar 

  • Vincent JP, Schweitz H, Lazdunski M (1975) Structure-function relationships and site of action of apamin, a neurotoxic polypeptide of bee venom with an action on the central nervous system. Biochemistry 14:2521–2525

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernardi, H. et al. (1989). K+ Channels: Structure, Function, Regulation, Molecular Pharmacology and Role in Diseased States. In: Azzi, A., Drahota, Z., Papa, S. (eds) Molecular Basis of Membrane-Associated Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74415-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74415-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74417-4

  • Online ISBN: 978-3-642-74415-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation