Sensorimotor Activity and Metabolic Factors in Vestibular Compensation

  • Conference paper
Post-Lesion Neural Plasticity

Abstract

Dramatic impairments of postural, locomotor and oculomotor functions are shown following unilateral vestibular neurectomy or hemilabyrinthectomy in many species. Functional recovery develops with time, leading to a total or near complete compensation of the sensorimotor deficits. It is generally assumed that these disturbances are due to the strong imbalance between the spontaneous firing rate and the dynamic response properties of the vestibular nuclei neurons on both sides (Mc Cabe and Ryu 1969; Shimazu and Precht 1966; Precht 1974; Xerri et al. 1983; Lacour et al. 1985). During the time course of vestibular compensation, symmetrical resting rates are observed and the dynamic neuronal characteristics of the deafferented vestibular cells are partially restored (Precht et al. 1966; Pompeiano et al. 1984; Ried et al. 1984). These neurophysiological data are closely correlated with the biochemical changes observed in many central nervous structures, including the deafferented vestibular nuclei. Modifications in the energy metabolism of vestibular nuclei located on the lesioned side were shown in the rat (Llinas and Walton 1979) and in the frog (Flohr et al. 1981). By using the deoxyglucose method and by comparing the distribution of radioactivity in uncompensated and compensated animals, these authors pointed to an increase of the glucose uptake within the deafferented vestibular nuclei during the chronic stage of compensation. Assuming that metabolic activity measured as glucose uptake closely parallels functionally significant activity (Sokoloff 1977), this method provides also a good index of activity in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Byrne JH (1987) Cellular analysis of associative learning. Physiol Rev 67: 329–439

    PubMed  CAS  Google Scholar 

  • Chatterjee SS, Trunzler G (1981) Neue Ergebnisse aus der Ginkgo Forschung. Arztez Naturheilverf 22: 593–604

    Google Scholar 

  • Etienne A, Hecquet F, Clostre F, Defeudis FV (1982) Comparaison des effets d’un extrait de Ginkgo biloba et de la chlorpromazine sur la fragilité osmotique, in vitro, d’érithrocytes de rat. J Pharmacol 13: 291–298

    PubMed  CAS  Google Scholar 

  • Flohr H, Bienhold H, Abeln W, Macskovics I (1981) Concepts of vestibular compensation. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 153–172

    Google Scholar 

  • Igarashi M, Alford BR, Kato Y, Levy JK (1975) Effect of physical exercise upon nystagmus and locomotor dysequilibrium after labyrinthectomy in experimental primates. Acta Oto-Laryngol 79: 214–220

    Article  CAS  Google Scholar 

  • Igarashi M, Levy JK, O-Uchi T, Reschke MF (1981) Further study of physical exercise and locomotor balance compensation after unilateral labyrinthectomy in squirrel monkeys. Acta Oto-Laryngol 92: 101–105

    Article  CAS  Google Scholar 

  • Karcher L, Zagerman P, Krieglstein J (1984) Effect of an extract of Ginkgo biloba on rat brain energy metabolism in hypoxia. Naunyn-Schmiedebergs Arch Pharmacol 327: 31–35

    Article  PubMed  CAS  Google Scholar 

  • Karcher L, Chatterjee SS, Gabard B, Krieglstein J (1985) Extract of Ginkgo biloba and triethyltin toxicity: biochemical studies in brain. Iupar 9th International Congress of Pharmacology

    Google Scholar 

  • Lacour M (1981) Contribution à l’étude de la restauration des fonctions posturo-cinétiques après labyrinthectomie chez le singe et le chat. Thèse Doctorat es-Sciences, Marseille, pp 152

    Google Scholar 

  • Lacour M (1984) Restauration fonctionnelle et réapprentissage: exemple de la compensation vestibuläre. In: Toupet M (ed) XVIIIth Symp Eng, Ipsen, pp 93 - 106

    Google Scholar 

  • Lacour M, Roll JP, Appaix M (1976) Modifications and development of spinal reflexes in the alert baboon (Papio papio) following an unilateral vestibular neurotomy. Brain Res 113: 255–269

    Article  PubMed  CAS  Google Scholar 

  • Lacour M, Manzoni D, Pompeiano O, Xerri C (1985) Central compensation of vestibular deficits. III. Response characteristics of lateral vestibular neurons to roll tilt after contralateral labyrinth deafferentation. J Neurophysiol 54: 988–1005

    PubMed  CAS  Google Scholar 

  • Llinas R, Walton K (1979) Vestibular compensation: a distributed property of the central nervous system. In: Asanuma H, Wilson VJ (eds) Integration in the nervous system. Igashu-Shoin, Tokyo New York, pp 145–166

    Google Scholar 

  • Major RT (1967) The Ginkgo, the most ancient living tree. Science 157: 1270–1273

    Article  PubMed  CAS  Google Scholar 

  • Mata M, Fink DJ, Gainer H et al. (1980) Activity-dependent energy metabolism in rat posterior pituitary reflects sodium pump activity. J Neurochem 34: 213–215

    Article  PubMed  CAS  Google Scholar 

  • McCabe BF, Ryu JH (1969) Experiments on vestibular compensation. Laryngoscope 79: 1728–1736

    Article  PubMed  CAS  Google Scholar 

  • Otani M, Chatterjee SS, Gabard B, Kreutzberg GW (1986) Effect of an extract of Ginkgo biloba on triethyltin-induced cerebral edema. Acta Neuropathol 69: 54–65

    Article  PubMed  CAS  Google Scholar 

  • Pompeiano O, Xerri C, Gianni S, Manzoni D (1984) Central compensation of vestibular deficits. II. Influence of roll tilt on different-size lateral vestibular neurons after ipsilateral labyrinth deafferentation. J Neurophysiol 52: 18–38

    PubMed  CAS  Google Scholar 

  • Poncin-Lafitte MC le, Rapin J, Rapin JR (1980) Effects of Ginkgo-biloba on changes induced by quantitative cerebral microembolization in rats. Arch Int Pharmacodyn Ther 243: 236–244

    PubMed  Google Scholar 

  • Precht W (1974) Characteristic of vestibular neurons after acute and chronic labyrinthine destruction. In: Kornhuber HH (ed) Vestibular system, Handbook of sensory physiology, vol VI. Springer, Berlin Heidelberg New York, pp 451–462

    Google Scholar 

  • Precht W, Shimazu H, Markham CH (1966) A mechanism of central compensation of vestibular function following hemilabyrinthectomy. J Neurophysiol 29: 996–1010

    PubMed  CAS  Google Scholar 

  • Precht W, Maioli C, Dieringer N, Cochran S (1981) Mechanisms of compensation of the vestibulo-ocular reflex after vestibular neurotomy. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 222–230

    Google Scholar 

  • Rapin JR, Poncin-Lafitte M le (1979) Modèle expérimental d’ischémie cérébrale. Action preventive de l’extrait de Ginkgo. Sémin Hòp (Paris) 55: 2047–2050

    CAS  Google Scholar 

  • Ried S, Maioli C, Precht W (1984) Vestibular nuclear neuron activity in chronically hemilaby-rinthectomized cats. Acta Oto-Laryngol 98: 1–13

    Article  CAS  Google Scholar 

  • Roland PE (1985) Cortical organization of voluntary behavior in man. Hum Neurobiol 4: 155–167

    PubMed  CAS  Google Scholar 

  • Roland PE, Larsen B (1976) Focal increase of cerebral blood flow during stereognostic testing in man. Arch Neurol 33: 551–558

    PubMed  CAS  Google Scholar 

  • Roland PE, Friberg L (1985) Localization of cortical areas activated by thinking. J Neurophysiol 53: 1219–1243

    PubMed  CAS  Google Scholar 

  • Roland PE, Skinhoj E (1981) Extrastriate cortical areas activated during visual discrimination in man. Brain Res 222: 166–171

    Article  PubMed  CAS  Google Scholar 

  • Roland PE, Larsen B, Lassen NA, Skinhoj E (1980) Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 43: 118–136

    PubMed  CAS  Google Scholar 

  • Sancessario G, Kreutzberg GW (1986) Stimulation of astrocytes affects cytotoxic brain edema. Acta Neuropathol 72: 3–14

    Article  Google Scholar 

  • Schaefer KP, Meyer DL (1973) Compensatory mechanisms following labyrinthine lesions in the guinea-pig. A simple model of learning. In: Zippel HP (ed) Memory and transfer of information. Plenum, New York, pp 203–232

    Google Scholar 

  • Shimazu H, Precht W (1966) Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J Neurophysiol 29: 467–492

    PubMed  CAS  Google Scholar 

  • Sokoloff L (1977) Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29: 13–26

    Article  PubMed  CAS  Google Scholar 

  • Xerri C, Lacour M (1980) Compensation des déficits posturaux et cinétiques après neurectomie vestibulaire unilatérale chez le chat. Ròle de l’activité sensorimotrice. Acta Oto-Laryngol 90: 414–424

    Article  CAS  Google Scholar 

  • Xerri C, Lacour M, Manzoni D, Pompeiano O (1983) Behavioral aspects and central neuronal events in vetibular compensation. In: Horn H (ed) Multimodal convergences in sensory system. Fischer, Stuttgart, pp 291–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lacour, M., Ez-Zaher, L., Xerri, C. (1988). Sensorimotor Activity and Metabolic Factors in Vestibular Compensation. In: Flohr, H. (eds) Post-Lesion Neural Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73849-4_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73849-4_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73851-7

  • Online ISBN: 978-3-642-73849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation