Intestinaltrakt und Pankreas

  • Chapter
Darmkrankheiten

Zusammenfassung

Die exokrine und endokrine Funktion des Pankreas wird über Peptide der Darmschleimhaut sowie über nervale Mechanismen reguliert. Der nach Nahrungsaufnahme jeweils unterschiedliche Darminhalt reguliert dabei die spezifischen Antworten der Organe. Es soll in diesem Kapitel die funktionelle Verknüpfung der exokrinen (enteroazinäre bzw. exokrine Achse) sowie der endokrinen Funktion (enteroinsuläre bzw. endokrine Achse) des Pankreas mit dem Darm beschrieben werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Angelini G, Cavallinin G, Bovo G, Castagnini A, Lavarmi E, Merigo F et al. (1988) Pancreatic function in chronic inflammatory bowel disease. Int J Pancreatol 3:185–193

    PubMed  CAS  Google Scholar 

  • Adler G, Nelson DK, Katschinski M, Beglinger C (1995) Neurohormonal control of human pancreatic exocrine secretion. Pancreas 10:1–13

    Article  PubMed  CAS  Google Scholar 

  • Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol (Lond) 28:325–353

    CAS  Google Scholar 

  • Bell GI, Sauterre RF, Mullenbach GT (1983) Hamster pre-proglucagon contains the sequence of glucagon and two related peptides. Nature 302:716–718

    Article  PubMed  CAS  Google Scholar 

  • Brown JC, Dryburgh JR (1971) A gastric inhibitory polypeptide II. The complete amino acid sequence. Can J Biochem 49:867–872

    PubMed  CAS  Google Scholar 

  • Costa E, Guidotti A (1991) Diazepam binding inhibitor (DBI) A peptide with multiple biological actions. Life Sci 49:325–344

    Article  PubMed  CAS  Google Scholar 

  • Creutzfeldt W (1979) The incretin concept today. Diabetologia 16:75–85

    Article  PubMed  CAS  Google Scholar 

  • Creutzfeldt W, Ebert R (1985) New developments in the incretin concept. Diabetologia 28:565–573

    Article  PubMed  CAS  Google Scholar 

  • DiMagno EP, Summerskill WH (1972) Impaired cholecysto-kinin-pancreozymin secretion, intraluminal dilution, and maldigestion of fat in sprue. Gastroenterology 63:25–32

    PubMed  CAS  Google Scholar 

  • Drucker DJ (1998) Glucagon-like peptides. Diabetes 47:159–169

    Article  PubMed  CAS  Google Scholar 

  • Fehmann HC, Göke R, Göke B (1995) Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose dependent insulin-releasing polypeptide. Endocr Rev 16:390–410

    PubMed  CAS  Google Scholar 

  • Go VLW, Hoffman AF, Summerskill WHJ (1970) Pancreozymin bioassay in man based on pancreatic enzyme secretion: Potency of specific amino acids and other digestive products. J Clin Invest 49:1558–1564

    Article  PubMed  CAS  Google Scholar 

  • Göke B, Fehmann HC, Schirra J, Hareter A, Göke R (1997) Das Darmhormon Glucagon-like peptide-1 (GLP-1): aus dem Experiment in die Klinik. Z Gastroenterol 35:285–294

    PubMed  Google Scholar 

  • Gutniak M, Orskov C, Holst JJ (1992) Antidiabetogenic effect of glucagon-like peptide 1(7-37) amide in normal subjects and patients with diabetes mellitus. New Engl J Med 326:1310–1322

    Article  Google Scholar 

  • Heikus B, Niemelä S, Lehtola J, Karttunen T, Lähde S (1996) Pancreatic duct abnormalities and pancreatic function in patients with chronic inflammatory bowel disease. Scand J Gastroenterol 31:517–523

    Article  Google Scholar 

  • Herzig KH (1998) CCK-releasing peptides. Regul Peptides 73:89–94

    Article  CAS  Google Scholar 

  • Herzig KH, Fölsch UR (1995) Feedback-Regulation. In: Erkrankungen des exkretorischen Pankreas. In: Mössner J, Adler G, Fölsch UR, Singer MV (Hrsg) Gustav Fischer, Jena, S 83–91

    Google Scholar 

  • Herzig KH, Schön I, Tatemoto K, Ohe Y, Fölsch UR, Owyang C (1996) Diazepam binding inhibitor is a potent cholecystokinin releasing peptide in the intestine. Proc Natl Acad Sci, USA 93:7927–7932

    Article  PubMed  CAS  Google Scholar 

  • Herzig KH, Wilgus C, Schön I, Tatemoto K, Fölsch UR (1998) Regulation of the action of the novel CCK releasing peptide diazepam binding inhibitor by inhibitory hormones and taurocholate. Regul Peptides 74:193–198

    Article  CAS  Google Scholar 

  • Hopman WPM, Rosenbusch G, Hectors MPC, Jansen JBMJ (1995) Effect of predigested fat on intestinal stimulation of plasma cholecystokinin and gall bladder motility in coeliac disease. Gut 36:17–21

    Article  PubMed  CAS  Google Scholar 

  • Hussain MA (1998) A biological function for glucagon-like peptide-2. Eur J Endocrinol 139:265–267

    Article  PubMed  CAS  Google Scholar 

  • Ihse I, Lilja P, Lundquist I (1977) Feedback regulation of pancreatic enzyme secretion by intestinal trypsin in man. Digestion 15:303–308

    Article  PubMed  CAS  Google Scholar 

  • Ivy AC, Oldberg E (1928) A hormone mechanism for gallbladder contraction and evacuation. Am J Physiol 86:599–613

    CAS  Google Scholar 

  • Iwai K, Fukuoka S, Fushiki T, Tsujikawa M, Hirose M, Tsunasawa S et al. (1987) Purification and sequencing of a trypsin-sensitive cholecystokinin-releasing peptide from rat pancreatic juice. J Biol Chem 262:8956–8959

    PubMed  CAS  Google Scholar 

  • Jain NK, Boivin M, Zinsmeister AR, DiMagno EP (1991) The ileum and carbohydrate-mediated feedback regulation of postprandial pancreaticobiliary secretion in normal humans. Pancreas 6:495–505

    Article  PubMed  CAS  Google Scholar 

  • Johansson O, Hilliges M, Östenson CG, Sandberg E, Efendic S, Mutt V (1991) Immunohistochemical localization of porcine diazepam-binding inhibitor (DBI) to rat endocrine pancreas. Cell Tissue Res 263:395–398

    Article  PubMed  CAS  Google Scholar 

  • LaBarre J, Still EU (1930) Studies on the physiology of secretin: III Further studies in the effects on secretin on the blood sugar. Am J Physiol 91:649–653

    CAS  Google Scholar 

  • Lauritsen KB, Moody AJ, Christensen KC, Jensen SL (1981) Gastric inhibitory polypeptide (GIP) and insulin release after small-bowel resection in man. Scand J Gastroenterol 16:417–423

    Article  PubMed  CAS  Google Scholar 

  • Layer P, Peschel S, Schlesinger T, Goebell H (1990) Human pancreatic secretion and intestinal motility: effects of ileal nutrient perfusion. Am J Physiol 258: G196–G201

    PubMed  CAS  Google Scholar 

  • Moore B, Edie ES, Abram JH (1906) On the treatment of diabetes mellitus by acid extract of duodenal mucous membrane. Biochem 11:28–38

    Google Scholar 

  • Owyang C, Green L, Rader D (1983) Colonic inhibition of pancreatic and biliary secretion. Gastroenterology 84:470–475

    PubMed  CAS  Google Scholar 

  • Owyang C, Louie DS, Tatum D (1986) Feedback regulation of pancreatic enzyme secretion. Suppression of cholecystokinin release by trypsin. J Clin Invest 77:2042–2047

    Article  PubMed  CAS  Google Scholar 

  • Owyang C, May D, Louie DS (1986) Trypsin suppression of pancreatic enzyme suppression. Differential effect on cholecystokinin release and the enteropancreatic reflex. Gastroenterology 91:637–643

    PubMed  CAS  Google Scholar 

  • Sarson DL, Wood SM, Holder D, Bloom SR (1982) The effect of glucose-dependent insulinotropic polypeptide infused at physiological concentrations on the release of insulin in man. Diabetologica 22:33–36

    Article  CAS  Google Scholar 

  • Schmidt WE, Creutzfeldt W, Schleser A, Roy Choudhury A, Nustede R, Höcker M et al. (1991) Role of CCK in regulation of pancreaticobiliary functions and GI motility in humans: effects of loxiglumide. Am J Physiol 260: G197–G206

    PubMed  CAS  Google Scholar 

  • Spannagel AW, Green GM, Guan D, Liddle RA, Faull K, Reeve Jr, JR (1996) Purification and characterization of a luminal cholecystokinin-releasing factor from rat intestinal secretion. Proc Natl Acad Sci USA 93:4415–4420

    Article  PubMed  CAS  Google Scholar 

  • Tarasova N, Spannagel AW, Green GM, Gomez G, Reed JT, Thompson JC et al. (1997) Distribution and localization of a novel cholecystokinin-releasing factor in the rat intestinal tract. Endocrinology 138:5550–5554

    Article  PubMed  CAS  Google Scholar 

  • Tromm A, Höltmann B, Hüppe D, Kuntz HD, Schwengler U, May B (1991) Hyperamylasämie, Hyperlipasämie und akute Pankreatitiden bei chronisch entzündlichen Darmerkrankungen. Leber Magen Darm 1:15–22

    Google Scholar 

  • Yasui A, Nimura Y, Hayakawa S, Shionoya S (1988) Feedback regulation of basal pancreatic secretion in humans. Pancreas 3:681–687

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herzig, K.H., Otte, J.M., Fölsch, U.R. (1999). Intestinaltrakt und Pankreas. In: Caspary, W.F., Stein, J. (eds) Darmkrankheiten. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59960-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59960-6_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64197-8

  • Online ISBN: 978-3-642-59960-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation