3D Multigrid on Partially Ordered Sets of Grids

  • Conference paper
Multigrid Methods V

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 3))

  • 360 Accesses

Abstract

In this paper we discuss different possibilities of using partially ordered sets of grids in multigrid algorithms. Because, for a classical sequence of regular grids the number of degrees of freedom grows much faster with the refinement level for 3D than for 2D, it is more difficult to find sufficiently effective relaxation procedures. Therefore, we study the possibility of using different families of (regular rectangular) grids.

Semi-coarsening is one technique in which a partially ordered set of grids is used. In this case still a unique discrete fine-grid problem is solved. On the other hand, sparse grid techniques are more efficient if we compare the accuracy obtained with the number of degrees of freedom used. However, in the latter case it is not always straightforward to identify an appropriate discrete equation that should be solved. The different approaches are compared.

The relation between the different approaches is described by looking at hierarchical bases and by considering full approximation (FAS). We show that, by lack of a semi-orthogonality property, the 3D situation is essentially more difficult than the 2D case. We also describe different multigrid strategies. Numerical results are given for a transonic Euler-flow over the ONERA M6-wing.

AMS Subject Classification (1991): 65N50, 65N55, 65N99

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Brandt. Guide to multigrid development. In W. Hackbusch and U. Trottenberg, editors, Multigrid Methods, volume 960 of Lecture Notes in Mathematics, pages 220–312. Springer-Verlag, Berlin, 1982.

    Chapter  Google Scholar 

  2. H. J. Bungartz. Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. PhD thesis, Institut für Informatik, TU München, 1992.

    Google Scholar 

  3. M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution of sparse grid problems. In Proceedings of the IMACS International Symposium on Iterative Methods in Linear Algebra, pages 263–281, Amsterdam, 1992. Elsevier.

    Google Scholar 

  4. M. Griebel, C. Zenger, and S. Zimmer. Multilevel Gauss-Seidel-algorithms for full and sparse grid problems. Computing, 50:127–148, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. W. Hemker. Sparse-grid finite-volume multigrid for 3D-problems. Adv. Comput. Math., 4:83–110, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. W. Hemker and B. Koren. A non-linear multigrid method for the steady Euler equations. In A. Dervieux, B. van Leer, J. Périaux, and A. Rizzi, editors, Numerical Simulation of Compressible Euler Flows, volume 26 of Notes on Numerical Fluid Mechanics, pages 175–196. Vieweg & Son, Braunschweig, Germany, 1989.

    Chapter  Google Scholar 

  7. P. W. Hemker and S. P. Spekreijse. Multiple grid and Osher’s scheme for the efficient solution of the steady Euler equations. Appl. Numer. Math., 2:458–476, 1986.

    Article  MathSciNet  Google Scholar 

  8. P.W. Hemker and P.M. de Zeeuw. BASIS3, a data structure for 3-dimensional sparse grids. In H. Deconinck and B. Koren, editors, Euler and Navier-Stokes Solvers Using Multi-Dimensional Upwind Schemes and Multigrid Acceleration, volume 56 of Notes on Numerical Fluid Mechanics, pages 443–484. Vieweg, Braunschweig, 1997.

    Google Scholar 

  9. P. W. Hemker and C. Pflaum. Approximation on partially ordered sets of regular grids. Applied Numerical Mathematics, 25:55–87, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Koren. Defect correction and multigrid for an efficient and accurate computation of airfoil flows. J. Comput. Phys., 77:183–206, 1988.

    Article  MATH  Google Scholar 

  11. B. Koren, P.W. Hemker, and C.T.H. Everaars. Multiple semi-coarsened multigrid for 3D CFD. In: Proceedings of the 13 th AIAA Computational Fluid Dynamics Conference, Snowmass Village, CO, pages 892–902 (AIAA-paper 97-2029), American Institute of Aeronautics and Astronautics, Reston, VA, 1997.

    Google Scholar 

  12. B. Koren, P.W. Hemker, and P.M. de Zeeuw. Semi-coarsening in three directions for Euler-flow computations in three dimensions. In: H. Deconinck and B. Koren, editors, Euler and Navier-Stokes Solvers Using Multi-Dimensional Upwind Schemes and Multigrid Acceleration, volume 56 of Notes on Numerical Fluid Mechanics, pages 547–567. Vieweg, Braunschweig, 1997.

    Google Scholar 

  13. C.B. Liem, T. Lu, and T.M. Shih. The Splitting Extrapolation Method. World Scientific, Singapore, 1995.

    MATH  Google Scholar 

  14. W. A. Mulder. A new multigrid approach to convection problems. J. Comput. Phys., 83:303–323, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  15. N. H. Naik and J. R. van Rosendale. The improved robustness of multigrid elliptic solvers based on multiple semicoarsened grids. SIAM J. Numer. Anal., 30:215–229, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Pflaum. A multi-level-algorithm for the finite-element-solution of general second order elliptic differential equations on adaptive sparse grids. Technical Report TUM-I-9419, SFB-Bericht Nr. 342/12/94 A, Technische Universität München. Institut für Informatik, May 1994.

    Google Scholar 

  17. R. Radespiel and R. C. Swanson. Progress with multigrid schemes for hypersonic flow problems. J. Comput. Phys., 116, 1995.

    Google Scholar 

  18. U. Rüde. Multilevel, extrapolation, and sparse grid methods. In Multigrid Methods IV, Proceedings of the Fourth European Multigrid Conference, Amsterdam, July 6–9, 1993, P.W. Hemker and P. Wesseling eds. Volume 116 of ISNM, pages 281–294, Basel, 1994. Birkhäuser.

    Google Scholar 

  19. C. Zenger. Sparse grids. In Parallel algorithms for partial differential equations: Proceedings of the Sixth GAMM-Seminar, Kiel, Jan. 1990, Notes on Numerical Fluid Mechanics, vol. 31. Vieweg, Braunschweig, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hemker, P.W., Koren, B., Noordmans, J. (1998). 3D Multigrid on Partially Ordered Sets of Grids. In: Hackbusch, W., Wittum, G. (eds) Multigrid Methods V. Lecture Notes in Computational Science and Engineering, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58734-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58734-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63133-0

  • Online ISBN: 978-3-642-58734-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation