Spezielle Untersuchungsverfahren

  • Chapter
Handbuch diagnostische Radiologie

Zusammenfassung

Die diagnostische Anwendung der Röntgenstrahlung beruht auf deren Schwächung durch Absorption und Streuung im durchstrahlten Gewebe. Die chemische Zusammensetzung des menschlichen Organismus aus Elementen vorwiegend niedriger Ordnungszahl — der Grad der Absorption korreliert mit der Ordnungszahl — setzt hierbei Grenzen: Weichteilorgane absorbieren Röntgenstrahlung nur in geringem und graduell ähnlichem Ausmaß.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Ahlström H, Gehl H-B (1997) Overview of MnDPDP as a pancreas-specific contrast agent for MR imaging. Acta Radiol 38: 660–664

    PubMed  Google Scholar 

  • Allen CM, Balen FG, Musouris C, McGregor G, Buckinham T, Lees WR (1993) Renal artery stenosis: Diagnosis using contrast enhanced Doppler ultrasound. Clin Radiol 48: 5

    Google Scholar 

  • Almèn T (1969) Contrast agent design. Some aspects on the synthesis of water-soluble contrast agents of low osmolality. J Theor Biol 24: 216–226

    PubMed  Google Scholar 

  • Amon U (1997) Pathophysiologische und immunologische Mechanismen kontrastmittelinduzierter anaphylaktoider Sofortreaktionen — eine Übersicht. Aktuelle Radiol 7: 145–148

    PubMed  CAS  Google Scholar 

  • Bauer A, Blomley M, Leen E, Cosgrove D, Schlief R (1999) Liverspecific imaging with SHU 563 A: Diagnostic potential of a new class of ultrasound contrast media. Eur Radiol 9 (Suppl 3): S349–S352

    PubMed  Google Scholar 

  • Benderbous S, Bonnemain B (1995) Superparamagnetic nanoparticles as blood-pool contrast agents. Contribution to MRI preclinical investigations. Radiologe 35: 248–251

    Google Scholar 

  • Bibra von H, Becher H, Firschke C, Schlief R, Emslander HP, Schömig A (1993) Enhancement of mitral valve regurgitation and normal left atrial color Doppler flow signals with peripheral venous injection of a saccharide-based contrast agent. J Am Coll Cardiol 22: 521–528

    Google Scholar 

  • Bloemberger N (1957) Proton relaxation times in paramagnetic solutions. J Chem Phy 27: 572–573

    Google Scholar 

  • Blomley M, Albrecht T, Cosgrove D, Jayaram V, Butler-Barnes J, Eckersley R (1998) Stimulated acoustic emission in liver parenchyma with Levovist. Lancet 351: 568

    PubMed  CAS  Google Scholar 

  • Brismar J, Jacobsson BF, Jorulf H (1991) Miscellaneous adverse effects of low-versus high-osmolality contrast media: A study revised. Radiology 179: 19–23

    PubMed  CAS  Google Scholar 

  • Burns PN, Fritzsch T, Weitschies W, Uhlendorf V, Hope-Simson D, Powers JE (1995) Pseudo-Doppler shifts from stationary tissue due to the stimulated emission of ultrasound from a new microsphere contrast agent. Radiology 197(P)

    Google Scholar 

  • Burns PN, Powers JE, Simpson DH, Uhlendorf V, Fritzsche T (1996) Harmonic imaging: Principles and preliminary results. Clin Radiol 51(Suppl 1): 50–55

    PubMed  Google Scholar 

  • Cavagna FM, Maggioni F, Castelli PM et al. (1997) Gadolinium chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest Radiol 32: 780–796

    PubMed  CAS  Google Scholar 

  • Chachuat A, Bonnemain B (1995) European clinical experience with ENDOREM. A new contrast agent for liver MRI in 1000 patients. Radiologe 35: 274–276

    Google Scholar 

  • Chen Wang (1998) Mangafodipir trisodium (MnDPDP)-enhanced magnetic resonance imaging of the liver and pancreas. Acta Radiol 39: 7–31

    Google Scholar 

  • Cigarroa RG, Lange RA, Williams RH, Hillis LD (1989) Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med 86: 649–652

    PubMed  CAS  Google Scholar 

  • Cosgrove D (1996) Warum brauchen wir Kontrastmittel für den Ultraschall? Clin Radiol 51(Suppl 1): 1–4

    PubMed  Google Scholar 

  • Darge K, Tröger J, Dütting T et al. (1999) Reflux in young patients: Comparison of voiding US of the bladder and retro-vesical space with echo enhancement versus voiding cystourethrography for diagnosis. Radiology 210: 201–207

    PubMed  CAS  Google Scholar 

  • de Jong N, Ten Cate FJ, Lancée CT, Roelandt JRTC, Bom N (1991) Principles and recent developments in ultrasound contrast agents. Ultrasonics 29: 324–330

    PubMed  Google Scholar 

  • Deray G (1999) Nephrotoxicity of contrast media. Nephrol Dial Transplant 14: 2602–2606

    PubMed  CAS  Google Scholar 

  • Dittmann H, Razwan E, Greis C, Seipel L (1999) Verbesserung der linksvenrikulären Endokarddarstellung durch intravenöse Gabe eines Linksherzkontrastmittels. Ultraschall Med 20: 185–190

    PubMed  CAS  Google Scholar 

  • Duroux M (1995) Übersicht der MRT-Kontrastmittel: Ein Fall von ENDOREM. Radiologie 35: 247

    Google Scholar 

  • Fink U, Fink BK, Lissner J (1992) Adverse reactions to nonionic contrast media with special regard to high-risk patients. Eur Radiol 2: 317–321

    Google Scholar 

  • Forsberg F, Goldberg BB, Liu JB, Merton D, Rawool NM, Shi WT (1999) Tissue specific US contrast agent for evaluation of hepatic and splenic parenchyma. Radiology 210: 125–132

    PubMed  CAS  Google Scholar 

  • Fürst G, Sitzer M, Hofer M, Steinmetz H, Hackländer T, Mödder U (1995) Kontrastmittelverstärkte farbkodierte Duplexsonographie hochgradiger Karotisstenosen. Ultraschall Med 16: 140–144

    PubMed  Google Scholar 

  • Furukawa T, Ueda J, Takahashi S, Sakaguchi K (1996) Elimination of low-osmolality contrast media by hemodialysis. Acta Radiol 37: 966–971

    PubMed  CAS  Google Scholar 

  • Haller C, Kübler W (1999) Röntgenkontrastmittel-induzierte Nephropathie: Pathogenese, Klinik, Prophylaxe. Dtsch Med Wochenschr 124: 332–336

    PubMed  CAS  Google Scholar 

  • Hamilton JA, Larson AJ, Lower AM, Hasnain S, Grudzinskas JG (1998) Evaluation of the performance of hysterosal**o contrast sonography in 500 consecutive, unselected, infertile women. Hum Reprod 13: 1519–1526

    PubMed  CAS  Google Scholar 

  • Hehrmann R, Klein D, Mayer D, Ploner O (1996) Hyperthyreoserisiko bei Kontrastmitteluntersuchungen. Aktuelle Radiol 6: 243–248

    PubMed  CAS  Google Scholar 

  • Heyman SN, Reichman J, Brezis M (1999) Pathophysiology of radiocontrast nephropathy. A role for medullary hypoxia. Invest Radiol 34: 685–691

    PubMed  CAS  Google Scholar 

  • Huhn HW, Tönnis HJ, Schmidt E (1993) Elimination von Röntgenkontrastmitteln durch Hämodialyse. Nieren-und Hochdruckkrankheiten 22: 45–52

    Google Scholar 

  • Hustvedt SO, Grant D, Southon TE, Zech K (1997) Plasma pharmacokinetics, tissue distribution and excretion of MnDPDP in the rat and dog after intravenous administration. Acta Radiol 38: 690–699

    PubMed  CAS  Google Scholar 

  • Kaps M, Schaffer P, Beller KD, Seidel G, Bliesath H, Wurst W (1995) Phase I: Transcranial echo contrast studies in healthy volunteers. Stroke 26: 2048–2052

    PubMed  CAS  Google Scholar 

  • Katayama H Yamaguchi K Kozuka T et al. (1990) Adverse reactions to ionic and nonionic contrast media. A report from the Japanese Committee on the Safety of Contrast Media. Radiololgy 175: 621–628

    CAS  Google Scholar 

  • Kaul S (1997) Myocardial contrast echocardiography — 15 years of research and development. Circulation 96: 3745–3760

    PubMed  CAS  Google Scholar 

  • Kellar KE, Fujii DK, Gunther WHH, Briley-Saebo K, Spiller M, Koenig SH (1999) „NC100150“, a preparation of iron oxide nanoparticles ideal for positive-contrast MR angiography. Magma 8: 207–213

    PubMed  CAS  Google Scholar 

  • Klibanov AL, Hughes MS, Marsh JN, Hall CS, Miller JG, Wible JH, Brandenburger GH (1997) Targeting of ultrasound contrast material. An in vitro feasibility study. Acta Radiol Suppl 412: 113–120

    PubMed  CAS  Google Scholar 

  • Kob A, Schild H (1988) Prophylaxe der kontrastmittelinduzierten Hyperthyreose. Röntgenpraxis 41: 82–83

    PubMed  CAS  Google Scholar 

  • Langholz JMW, Petry J, Schuermann R, Schlief R, Heidrich H (1993) Indikationen zur Unterschenkelarteriendarstellung mit Kontrastmittel bei der farbkodierten Duplexsonographie. Ultraschall Klin Prax 8: 196

    Google Scholar 

  • Laniado M, Chachuat A (1995) Verträglichkeitsprofil von ENDOREM. Radiologe 35: 266–270

    Google Scholar 

  • Lanza GM, Wallace KD, Fischer SE et al. (1997) High-frequency ultrasonic detection of thrombi with a targeted contrast system. Ultrasound Med Biol 23: 863–870

    PubMed  CAS  Google Scholar 

  • Lasser EC, Berry CC, Talner LB et al. (1987) Pretreatment with corticosteroids to alleviate reactions to intravenous contrast material. New Engl J Med 317: 845–849

    PubMed  CAS  Google Scholar 

  • Lasser EC (1991) Pseudoallergic drug reactions to radiographic contrast media. Immunol Allergy Clin North Am 11: 645–657

    Google Scholar 

  • Lauffer RB, Parmelee DJ, Dunham SU et al. (1998) MS-325: Albumin-targeted contrast agent for MR angiography. Radiology 207: 529–538

    PubMed  CAS  Google Scholar 

  • Lauterbur PC, Mendoca-Dias MH, Ruding AM (1978) Argumentation of tissue water proton spin-lattice relaxation rates by in-vivo addition of paramagnetic ions. In: Dutton PL, Leigh JS, Scarpa A (eds) Frontiers of biological energetics. Academic Press, New York

    Google Scholar 

  • Lev-Toaff AS, Langer JE, Rubin DL, Zelch JV, Chong WK, Barone AE, Goldberg BB (1999) Safety and efficacy of a new oral contrast agent for sonography: a phase II trial. AJR Am J Roentgenol 173: 431–436

    PubMed  CAS  Google Scholar 

  • Lotsberg O, Hovem JM, Aksum B (1996) Experimental observation of subharmonic oscillations in Infoson bubbles. J Acoust Soc Am 99: 1366–1369

    Google Scholar 

  • Marchal G, Van Hecke P, Demaerel P. et al. (1989) Detection of liver metastases with superparamagnetic iron oxide in 15 patients: Results of MR imaging at 1,5 T. AJR Am J Roentgenol 152: 771–775

    PubMed  CAS  Google Scholar 

  • Meltzer RS (1996) Food and Drug Administration ultrasound device regulation: The output display standard, the „mechanical index“ and ultrasound safety. J Am Soc Echocardiogr 9: 216–220

    PubMed  CAS  Google Scholar 

  • Misselwitz B, Platzek J, Radüchel B, Oellinger JJ, Weinmann H-J (1999) Gadofluorine 8: Iitial experience with a new contrast medium for interstitial MR lymphography. Magma 8: 190–195

    PubMed  CAS  Google Scholar 

  • Mohr U, Weissleder R (1996) Lymphknotendiagnostik mit bildgebenden Verfahren. Ein Überblick mit besonderer Berücksichtigung der letzten Entwicklungen im Bereich der MR-Kontrastmittel. Lymphol 20: 9–14

    Google Scholar 

  • Ogan MD, Schmiedl U, Moseley ME et al. (1987) Albumin labeled with Gd-DTPA — an intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: Preparation and characterization. Invest Radiol 22: 665–671

    PubMed  CAS  Google Scholar 

  • Palmer FJ (1988) The RACR survey of intravenous contrast media reactions — final report. Australas Radiol 32: 426–428

    PubMed  CAS  Google Scholar 

  • Port M, Meyer D, Bonnemain B et al. (1999) P760 and P775: MRI contrast agents characterized by new pharmacokinetic properties. Magma 8: 172–176

    PubMed  CAS  Google Scholar 

  • Prasad PV, Cannillo J, Chavez DR et al. (1999) First-pass renal perfusion imaging using MS-325, an albumin-targeted MRI contrast agent. Invest Radiol 34: 566–571

    PubMed  CAS  Google Scholar 

  • Price RJ, Skyba DM, Kaul S, Skalak TC (1998) Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 98: 1264–1267

    PubMed  CAS  Google Scholar 

  • Ranganathan RS, Fernandez ME, Kang SI et al. (1998) New multimetric magnetic resonance imaging agents. Invest Radiol 33: 779–797

    PubMed  CAS  Google Scholar 

  • Ries F, Honisch C, Lambertz M, Schlief R (1993) A transpulmonary contrast medium enhances the transcranial Doppler signal in humans. Stroke 24: 1903–1909

    PubMed  CAS  Google Scholar 

  • Rummeny EJ, Reimer P, Daldrup H, Peters PE (1995) Detektion von Lebertumoren. Radiologe 35: 252–257

    Google Scholar 

  • Rummeny EJ, Torres CG, Kurdziel JC et al. (1997) MnDPDP for MR imaging of the liver. Results of an independent image evaluation of the European phase III studies. Acta Radiol 38: 638–642

    PubMed  CAS  Google Scholar 

  • Saini S, Stark DD, Hahn PF et al. (1987) Ferrite particles: A superparamagnetic MR contrast agent for enhanced detection of liver carcinoma. Radiology 162: 217–222

    PubMed  CAS  Google Scholar 

  • Schareck WD (1995) Warum radiologische Diagnostik bei Lebertumoren? Radiologe 35: 271–273

    Google Scholar 

  • Schlief R, Bauer A (1996) Ultraschallkontrastmittel. Radiologe 36: 51–57

    PubMed  CAS  Google Scholar 

  • Schmiedel E (1987) Pharmakodynamik und Verträglichkeit von Röntgenkontrastmitteln. Röntgenbl 40: 1–8

    CAS  Google Scholar 

  • Schmiedel E (1993) Kontrastmittelnephropathie — ein Beitrag zur Reduzierung des Untersuchungsrisikos. Aktuelle Radiol 3: 253–257

    PubMed  CAS  Google Scholar 

  • Schrope B, Newhouse V (1993) Second harmonic ultrasonic blood perfusion measurement. Ultrasound Med Biol 19: 567–579

    PubMed  CAS  Google Scholar 

  • Schrope B, Newhouse VL, Uhlendorf V (1992) Simulated capillary blood flow measurement using a non-linear ultrasonic contrast agent. Ultrason Imaging 14: 134–158

    PubMed  CAS  Google Scholar 

  • Schürholz T, Schulze H (1993) Jodinduzierte Hyperthyreose in der Urologie durch Anwendung von Röntgenkontrastmittel. Urologie A 32: 300–307

    Google Scholar 

  • Shankar PM, Dala Krishna P, Newhouse VL (1998) Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement. Ultrasound Med Biol 24: 395–399

    PubMed  CAS  Google Scholar 

  • Stacul F, Thomsen HS (1996) Nonionic monomers and dimers. Eur Radiol 6: 756–761

    PubMed  CAS  Google Scholar 

  • Stark DD, Weissleder R, Elizondo G et al. (1988) Superparamagnetic iron oxide: Clinical application as a contrast agent for MR imaging of the liver. Radiology 168: 297–391

    PubMed  CAS  Google Scholar 

  • Taupitz M, Hamm B (1995) Stellenwert der MRT in der Diagnostik fokaler Leberläsionen. Radiologe 35: 243–246

    Google Scholar 

  • Thomsen HS, Busch WH (1998) Adverse effects of contrast media. Incidence, prevention and management. Drug Safety 19: 313–324

    PubMed  CAS  Google Scholar 

  • Toft KG, Hustvedt SO, Grant D et al. (1997) Metabolism and pharmakokinetics of MnDPDP in man. Acta Radiol 38: 677–689

    PubMed  CAS  Google Scholar 

  • Torres CG, Lundby B, Tufte Sterud A et al. (1997) MnDPDP for MR imaging of the liver. Results from the European phase III studies. Acta Radiol 38: 631–637

    PubMed  CAS  Google Scholar 

  • Unger EC, McCreery TP, Sweitzer RH (1997) Ultrasound enhances gene expression of liposomal transfection. Invest Radiol 32: 723–727

    PubMed  CAS  Google Scholar 

  • Unger EC, McCreery TP, Sweitzer RH, Shen D, Wu G (1998) In vitro studies of a new thrombus-specific ultrasound contrast agent. Am J Cardiol 81: 58G–61G

    PubMed  CAS  Google Scholar 

  • Unger EC, Shen D, Wu G, Stewart L, Matsunaga TO, Trouard TP (1999) Gadolinium-containing copolymeric chelates — a new potential MR contrast agent. Magma 8: 154–162

    PubMed  CAS  Google Scholar 

  • Villanueva FS, Jankowski RJ, Klibanov S et al. (1998) Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 98: 1–5

    PubMed  CAS  Google Scholar 

  • Vogl TJ, Hammerstingl R, Keck H, Felix R (1995) Differentialdiagnose von fokalen Leberläsionen mittels MRT unter Verwendung des superparamagnetischen Kontrastmittels ENDOREM. Radiologe 35: 258–265

    Google Scholar 

  • Walker AC, Carr DH (1986) Reactions to radiographic contrast media: An attempt to detect specific anti-contrast medium antibodies in the sera of reactor patients. Br J Radiol 59: 531–536

    PubMed  CAS  Google Scholar 

  • Wang C, Ahlström H, Ekholm S et al. (1997) Diagnostic efficacy of MnDPDP in MR imaging of the liver. A phase III multicentre study. Acta Radiol 38: 643–649

    PubMed  CAS  Google Scholar 

  • Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant intravenous infusion. Circulation 97: 473–483

    PubMed  CAS  Google Scholar 

  • Wei K, Kaul S (1997) Recent advances in myocardial contrast echocardiography. Curr Opin Cardiol 12: 539–546

    PubMed  CAS  Google Scholar 

  • Wermke W, Gaßmann B (1998) Tumour diagnostic of the liver with echo enhancers. Springer, Berlin Heidelberg New York Tokyo Literatur zu Abschn. 2.2

    Google Scholar 

  • Bauer M, Madjar H (2000) Mammographie. Radiologe 40: 1114–1123

    PubMed  CAS  Google Scholar 

  • Bick U (2000) Digitale Vollfeldmammographie. Rofo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 173: 957–964

    Google Scholar 

  • Bundesärztekammer (1995) Leitlinien der Bundesärztekammer zur Qualitätssicherung in der Röntgendiagnostik. Überarbeitete und ergänzte Fassung. Dtsch Ärztebl 92: C1515-C1527

    Google Scholar 

  • Burgess AE (1977) Focal Spots: I. MTF separability. Invest Radiol 12: 36–43

    PubMed  CAS  Google Scholar 

  • Doi K, Imhof H (1977) Noise reduction by radiographic magnification. Radiology 122: 479–487

    PubMed  CAS  Google Scholar 

  • Dronkers DJ, Hendriks JHCL, Holland R, Rosenbusch G (1999) Radiologische Mammadiagnostik. Thieme, Stuttgart

    Google Scholar 

  • Elsaß A, Fenner E, Friedel R, Schnitger H (1971) Geometrische Unschärfe und Intensitätsverteilung in einem Röntgenaufnahmefeld. Rofo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 115: 822–827

    Google Scholar 

  • European Commission (1999) Multilingual glossary of terms relating to quality assurance and radiation protection in diagnostic radiology, EUR 17538. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Fiedler E, Aichinger U, Böhner C, Säbel M, Schulz-Wendtland R, Bautz W (1999) Bildgüte und Strahlenexposition bei der digitalen Mammographie mit Speicherfolien in Vergrößerungstechnik. Rofo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 171: 60–64

    PubMed  CAS  Google Scholar 

  • Funke M, Hermann KP, Breiter N et al. (1997) Digitale Speicherfolienmammographie in Vergrößerungstechnik: Experimentelle Untersuchungen zur Ortsauflösung und zur Erkennbarkeit von Mikrokalk. Rofo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 167: 174–179

    PubMed  CAS  Google Scholar 

  • Haus AG, Cowart RW, Dodd GD, Bencomo J (1978) A method of evaluating and minimizing geometric unsharpness for mammographic X-ray units. Radiology 128: 775–778

    PubMed  CAS  Google Scholar 

  • Hermann KP, Hundertmark C, Funke M, von Brenndorf A, Grabbe E (1999) Direkt digitale Vergrößerungsmammographie mit einem großflächigen Detektor aus amorphem Silizium. Rofo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 170: 503–506

    PubMed  CAS  Google Scholar 

  • International Electrotechnical Commission (1993) X-ray tube assemblies for medical diagnosis — characteristics of focal spots. IEC Publication 336. International Electrotechnical Commission, Genf

    Google Scholar 

  • Klein R, Säbel M (2000) Anwendung der ROC-Methode auf Bildgüteprobleme in der Röntgen-Mammographie. 1. Teil: Die ROC-Analyse als Bildgütetestverfahren. Röntgenpraxis 53: 29–42

    CAS  Google Scholar 

  • Liu B, Goodsitt M, Chan HP (1995) Normalized average glandular dose in magnification mammography. Radiology 197: 27–32

    PubMed  CAS  Google Scholar 

  • Nickoloff EL, Donelly E, Eve L, Atherton JV, Asch T (1990) Mammographic resolution: Influence of focal spot intensity distribution and geometry. Med Phys 17: 436–447

    PubMed  CAS  Google Scholar 

  • Post K, Hermann KP, Funke M, Hundertmark C, Breiter N, Grabbe E (1997) Direktradiographische Vergrößerungsmammographie mit einer neuen Mikrofokusröhre. Radiologe 37: 604–609

    PubMed  CAS  Google Scholar 

  • Säbel M, Aichinger H (1989) Standards in the technique of mammography. In: Kubli F, Fournier D von, Bauer M, Junkermann H, Kaufmann M (eds) Breast diseases. Springer, Berlin Heidelberg New York Tokyo, pp 129–136

    Google Scholar 

  • Säbel M, Aichinger H (1996) Recent developments in breast imaging. Phys Med Biol 41: 315–368

    PubMed  Google Scholar 

  • Säbel M, Aichinger U, Schulz-Wendtland R, Bautz W (1999) Digitale Vollfeld-Mammographie: Physikalische Grundlagen und klinische Aspekte. Röntgenpraxis 52: 171–177

    PubMed  Google Scholar 

  • Säbel M, Aichinger U, Schulz-Wendtland R (2001) Die Strahlenexposition bei der Röntgen-Mammographie. Rofo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 173: 79–91

    PubMed  Google Scholar 

  • Sorenson JA, Floch J (1985) Scatter rejection by air gaps: An empirical model. Med Phys 12: 308–316

    PubMed  CAS  Google Scholar 

  • Stargardt A, Angerstein W (1975) Der optimale Abbildungsmaßstab bei der direkten Röntgenvergrößerung. Rofo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 123: 73–78

    PubMed  CAS  Google Scholar 

  • Teubner J, Lenk JZ, Wentz KU, Georgi M (1987) Vergrößerungsmammographie mit 0,1 mm Mikrofokus. Radiologe 27: 155–164

    PubMed  CAS  Google Scholar 

  • Wurm J, Säbel M, Weishaar J (1982) Anwendung der ROC-Methode auf Probleme der Bildgüte und Qualitätskontrolle in der Mammographie. Rofo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 137: 201–211 Literatur zu Abschn. 2.3

    PubMed  CAS  Google Scholar 

  • Anxionnat R, Trousset Y, Da Costa E, Braun M, Bracard S, Picard L et al. (1999) Accuracy of distance measurements from 3D X-ray angiography: Application to the measurement of the size of intracranial aneurisms. Suppl Radiology 213:276

    Google Scholar 

  • Brunner T, Durlak P, Barth K et al. (1999) 3D reconstruction of cerebral vessels based on a rotational angiography with a C-arm. Eur Radiol 9Suppl 1: 167

    Google Scholar 

  • Crolla D, Baert AL, Roemhildt K, Termote JL (1979) Routinemäßige Hochqualitäts-Vergrößerungsangiographie mit Puck-24-oder AOT-35-Blattfilmwechsler und Mikrofokus-Hochleistungs-Röntgenstrahler Optilix. Electromedica 3: 89–97

    Google Scholar 

  • David E (1995) Physiologie des Sehens. In: Morneburg H (Hrsg) Bildgebende Systeme für die medizinische Diagnostik, 3. Aufl. Publicis MCD Verlag, Erlangen, S 19–43

    Google Scholar 

  • Dendy PP, Heaton B (1999) Physics for diagnostic radiology, 2nd edn. Institute of Physics Publishing, Bristol Philadelphia, p 307

    Google Scholar 

  • Dietz K (1981) Eine Drehanoden-Röntgenröhre mit Mikrobrennfleck. Röntgenpraxis 5: 206–215

    Google Scholar 

  • Dietz K, Kuhn H (1980) Stereo-Vergrößerungsangiographie. Electromedica 4: 1–6

    Google Scholar 

  • Doi K, Rossmann K (1975) Longitudinal magnification in radiologic images of thick objects: A new concept in magnification radiography. Radiology 114: 443–447

    PubMed  CAS  Google Scholar 

  • Doi K, Rossmann K, Duda E (1977) Application of longitudinal magnification effect to magnification stereoscopic angiography: A new method of cerebral angiography. Radiology 124: 395–401

    PubMed  CAS  Google Scholar 

  • Eisenberger F, Gum**er R, Miller K, Horbaschek H, Sklebitz H (1985) Stereo-Röntgen in der Endourologie. Urologe A 24: 342–345

    PubMed  CAS  Google Scholar 

  • IEC (International Electrotechnical Commission) (1993) X-ray tube assemblies for medical diagnosis — characteristics of focal spots. IEC publication 60636, Geneva IEC

    Google Scholar 

  • Kalender WA, Seissler W, Klotz E, Vock P (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176: 181–183

    PubMed  CAS  Google Scholar 

  • Klucznik RP, Mawad ME (1999) Utilization of three-dimensional Rotational Angiography in the evaluation and endovascular treatment of cerebral aneurisms and arteriovenous malformations. Radiology Suppl 213: 276 Literatur zu Abschn. 2.4

    Google Scholar 

  • Barrett H H, Swindell W (1981) Radiological imaging. Academic Press, New York

    Google Scholar 

  • Bischoff K, Gellinek W (1965) Geräte für die Anwendung ionisierender Strahlen. In: Berger H, Bischoff K, Gellinek W, Diethelm L, Vieten H (Hrsg) Handbuch der medizinischen Radiologie, Bd I. Physikalische Grundlagen und Technik, Teil 2. Springer, Berlin Heidelberg New York, S 203–212

    Google Scholar 

  • Bocage AEM. (1922) Procédé et dispositifs de radiographie sur plaque en mouvement. Französisches Patent 536464

    Google Scholar 

  • Dale S, Holmberg M, Larsson H et al. (1997) A mobile tomographic gamma camera system for acute studies. IEEE Trans Nuclear Sci 44: 199–203

    Google Scholar 

  • Edholm P, Granlund G, Knutsson H, Petersson C (1980) Ectomography — a new radiographic method for reproducing a selected slice by varying thickness. Acta Radiol 21: 433–442

    CAS  Google Scholar 

  • Grant DG (1972) Tomosynthesis: A three-dimensional radiographic imaging technique. IEEE Trans Biomed Eng 19: 20–28

    PubMed  CAS  Google Scholar 

  • Grossmann G (1934) Procédé et dispositif pour la représentation radiographique des section des corps. Französisches Patent 771887

    Google Scholar 

  • Jordan K, Knoop B (1988) Meßtechnik in der Emissions-Computertomographie. In: Diethelm L, Heuck F, Olsson O, Strnad F, Vieten H, Zup**er A (Hrsg) Handbuch der medizinischen Radiologie, Bd XV/1B. Springer, Berlin Heidelberg New York Tokio, S 149–313

    Google Scholar 

  • Kalender WA (2000) Computertomographie. Grundlagen, Gerätetechnik, Bildqualität, Anwendungen. Publicis MCD Verlag, Erlangen

    Google Scholar 

  • Kieffer J (1938) The laminograph and its variations: Applications and implications of the planigraphic principles. Am J Roentgenol 39: 497–513

    Google Scholar 

  • Lauritsch G, Härer W (1998) A theoretical framework for filtered backprojection in tomosynthesis. In: Hanson KM (ed) Medical Imaging 1998: Image processing Bd 3338. SPIE, Bellingham(USA), pp 1127–1137

    Google Scholar 

  • McCauley Th G, Stewart A, Stanton M, Wu T, Phillips W (2000) Three-dimensional breast image reconstruction from a limited number of views. In: Dobbins JT III, Boone JM (eds) Medical imaging 2000: Physics of medical imaging Bd 3977. SPIE, Bellingham (USA), pp 384–395

    Google Scholar 

  • Natterer F (1986) The mathematics of computerized tomography. Teubner, Stuttgart

    Google Scholar 

  • Paatero YV (1949) A new tomographical method for radiographing curved outer surfaces. Acta Radiol 32: 177–184

    PubMed  CAS  Google Scholar 

  • Stieve FE (1973) Bevorzugte Darstellung einzelner Körperschichten. In: Vieten H et al. (Hrsg) Handbuch der medizinischen Radiologie, Bd. 3. Springer, Berlin Heidelberg NewYork, S 715–1041

    Google Scholar 

  • Vallebona A (1931) Radiography with great enlargement (microradiography) and a technical method for the radiographic dissociation of the shadow. Radiology 17: 340–341

    Google Scholar 

  • Webb S (1990) From the watching of shadows. The origins of radiological tomography. Adam Hilger, Bristol New York

    Google Scholar 

  • Westra D (1966): Zonography, the narrow-angle tomography. Excerpta Medica Foundation, Amsterdam

    Google Scholar 

  • Ziedses des Plantes BG (1973) A special method of making radiographs of the skull and vertebral column. In: Selected works of B.G. Ziedses des Plantes. Excerpta Medica, Amsterdam (Reprint der Originalarbeit von 1931)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aichinger, H. et al. (2003). Spezielle Untersuchungsverfahren. In: Schmidt, T. (eds) Handbuch diagnostische Radiologie. Handbuch diagnostische Radiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55825-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55825-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62553-4

  • Online ISBN: 978-3-642-55825-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation