Assessment of the Problem of Numerical Simulation of Blood Flow Through Three-Dimensional Bifurcations

  • Conference paper
Biofluid Mechanics

Abstract

To understand flows through arterial bifurcations, a comprehensive literature survey covering both medical and engineering aspects of some of the related subject areas has been carried out. The salient results of this survey are discussed. Previous numerical studies of blood flow through arterial bifurcations are mostly restricted to two-dimensions. Three-dimensional modelling is difficult to perform due to the major disadvantages of large demands in computer storage and time. To solve this problem, a new line of approach using the latest parallel computer (CRAY X-MP) with currently available codes is presented. Two codes, FLOW3D and ASTEC, are assessed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldsmith H, Skalak R Hemodynamics. A Rev Fluid Mech 7: 213–247, 1975.

    Article  ADS  Google Scholar 

  2. Skalak R, Keller S, Secomb T: Mechanics of blood flow ASME J Biomech Eng 103: 102–115, 1981.

    Article  Google Scholar 

  3. Liepsch D: Flow in tubes and arteries-a comparison. Biorheology 23: 395–433, 1986.

    Google Scholar 

  4. Pedley T: The fluid mechanics of large blood vessels. Cambridge Univ Press, 1980.

    Google Scholar 

  5. Dinnar U: Cardiovascular fluid dynamics ( CRC ), Florida 1981.

    MATH  Google Scholar 

  6. Cam C, Pedley T, Schroter R et al: The mechanics of the circulation. Oxford Univ. Press, 1978.

    Google Scholar 

  7. Fernandez R, Witt K, Botwin M: Pulsatile flow through a bifurcation with applications to arterial disease. J Biomech 9: 575–580, 1976.

    Article  Google Scholar 

  8. Ku D, Giddens D, Phillips D et al: Hemodynamics of the normal human carotid bifurcation: In vitro and in vivo studies. Ultrasound Med Biol 11: 13–26, 1985.

    Article  Google Scholar 

  9. Ku d, Giddens D, Zarins C: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Arteriosclerosis 5: 293–302, 1985.

    Article  Google Scholar 

  10. O’Brien V, Ehrlich L, Friedman M: Unsteady flow in a branch. J Fluid Mech 75: 315–336, 1976.

    Article  ADS  MATH  Google Scholar 

  11. O’Brien V, Ehrlich L: Simulation of unsteady flow at renal branches. J Biomech 10: 623–631, 1977.

    Article  Google Scholar 

  12. Bharadvaj B, Mabon R, Giddens D: Steady flow in a model of the human carotid bifurcation. Part I-Flow visualization. J Biomech 15: 349–362, 1982.

    Article  Google Scholar 

  13. Bharadvaj B, Mabon R, Giddens D: Steady flow in a model of the human carotid bifurcation. Part II-Laser Doppler anemometer measurements. J Biomech 15: 363–378, 1982.

    Article  Google Scholar 

  14. Forster F, Chikos P, Frazier J: Geometric modelling of the carotid bifurcation in humans: implications in ultrasonic Doppler and radiologie investigation. J an Ultrasound 13: 385–390, 1985.

    Article  Google Scholar 

  15. Ku D, Giddens D: Pulsatile flow in a model carotid bifurcation. Arteriosclerosis 3: 31–39, 1983.

    Article  Google Scholar 

  16. Ku D, Giddens D: Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation. J Biomech 20: 407–421, 1987.

    Article  Google Scholar 

  17. Lutz R, Hsu L, Menamat J, et al: Comparison of steady and pulsatile flow in a double branching arterial model. J Biomech 16: 753–766, 1983.

    Article  Google Scholar 

  18. Deters O, Mark F, Bargeron C, et al: Comparison of steady and pulsatile flow near the ventral and vorsal walls of casts of human aortic bifurcations. ASME J Biomech Eng 106: 79–83, 1984.

    Article  Google Scholar 

  19. Fukushima T, Homma T, Azuma T, et al.: Characteristics of secondary flow in steady and pulsatile flows through a symmetrical bifurcation. Biorheology 24: 3–12, 1987.

    Google Scholar 

  20. Liepsch D, Moravec S: Measurement and calculations of laminar flow in a ninety degree bifurcation. J Biomech 15: 473–485, 1982.

    Article  Google Scholar 

  21. Perktold K, Hilbert D: Numerical simulation of pulsatile flow in a carotid bifurcation model. J Biomech 8: 193–199, 1986.

    Google Scholar 

  22. Rindt C, Vosse F, Steenhoven A et al: A numerical and experimental analysis of the flow field in a two-dimensional model of the human carotid artery bifurcation. J Biomech 20: 499–509, 1987.

    Article  Google Scholar 

  23. Khodadadi J, Vlachos N, Liepsch D, et al: LDA measurements and numerical prediction of pulsatile laminar flow in a plane 90 degree bifurcation. J Biomech Eng 110: 129–136, 1988.

    Article  Google Scholar 

  24. Wille S: Numerical simulation of steady flow inside a three dimensional aortic bifurcation model. J Biomed Eng 6: 49–55, 1984.

    Article  MathSciNet  Google Scholar 

  25. Dinner U, Enden G, Israeli M: A numerical study of flow in a three dimensional bifurcation. Cardiovascular Systems Dynamics Soc Meeting, Canada, 1988.

    Google Scholar 

  26. Ku D, Liepsch D: The effects of non-Newtonian viscoelasticity and wall elasticity on flow at a 90° bifurcation. Biorheology 23: 359–370, 1986.

    Google Scholar 

  27. Moravec S, Liepsch D: Flow investigation in a model of a three-dimensional human artery, with Newtonian and non-Newtonian fluids. part I. Biorheology 20: 745–759, 1983.

    Google Scholar 

  28. Gresho P: A modified finite element method for solving the time-dependent incompressible Navier-Stokes equations. Part I: Theory. Int J Num Meth in Fluids 4: 557–598, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  29. Burns A, Jones I, Knightley J et al.: FLOW3D, release 2: user manual. UKAEA Report, AERE Harwell, 1987.

    Google Scholar 

  30. Burns A, Wilkes N: A finite difference method for the computation of fluid flows in complex 3D geometries. UKAEA Report, AERE-R 12342, 1987.

    Google Scholar 

  31. Rhie C, Chow W: A numerical study of the turbulent flow past an aerofoil with trailing edge separation. AIAA J 21: 1525–1532, 1983.

    Google Scholar 

  32. Burns D, Wilkes N, Jones I, et al: FLOW3D: Body fitted coordinates UKAEA Report, AERE-R12262, Harwell, 1986.

    Google Scholar 

  33. Lonsdale R An algorithm for solving thermal-hydraulic equations in complex geometry. The AS 1’EC code. UKAEA report, Dounreay, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, X.Y., Collins, M.W. (1990). Assessment of the Problem of Numerical Simulation of Blood Flow Through Three-Dimensional Bifurcations. In: Liepsch, D.W. (eds) Biofluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52338-0_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52338-0_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52730-5

  • Online ISBN: 978-3-642-52338-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation