Thermodynamic Behavior of Solid Polymers in Plastic Deformation and Cold Drawing

  • Chapter
Thermophysical Properties of Polymers

Abstract

The mechanical work spent on the irreversible deformation of solids is always at least partly dissipated. Therefore, independent of the sign of the heat effect resulting from the elastic deformation, plastic deformation is always accompanied by an exothermic effect. A schematic diagram of thermo-mechanical behavior of an ordinary solid and a solid polymer is shown in Fig. 7.1. After a small amount of initial cooling, resulting from elastic deformation, evolution of heat accompanying the beginning of plastic deformation occurs. The appearence of plastic deformation is accompanied by heat evolution independent of whether it is localized (necking) or distributed along the sample uniformly. If the plastic deformation is accompanied with a neck formation, which is typical of the cold drawing of the majority of glassy and crystalline polymers well below glass transition or melting point, then the heat generated locally may lead to a considerable local temperature rise. This temperature rise may strongly influence the cold drawing of the sample. At low drawing rates the neck propagates uniformly along the sample. Under certain conditions, however, especially at a high rate of extension for some polymers, instabilities of neck propagation can be observed (self-oscillation phenomenon), which is also closely related with the local thermal effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ziabicki A (1976) Fundamentals of fiber formation, Wiley New York

    Google Scholar 

  2. Marshall J and Thompson AB (1954) Proc Roy Soc Ser A 221: 541

    Article  CAS  Google Scholar 

  3. Hookway DC (1958) J Textile Institute 49: 292

    Article  Google Scholar 

  4. Müller FH and Jackel K (1952) Kolloid Z 145: 145

    Article  Google Scholar 

  5. Jackel K (1954) Kolloid Z 137: 130

    Article  CAS  Google Scholar 

  6. Müller FH (1954) Kunststoffe 44: 569

    Google Scholar 

  7. Ward IM (1971) Mechanical Properties of Solid Polymers, Wiley New York

    Google Scholar 

  8. Maher JW, Haward RN and Hay HN (1980) J Polym Sci Polym Phys Ed 18: 2169

    Article  CAS  Google Scholar 

  9. Schwarz G (1981) Colloid Polym Sci 259: 149

    Article  CAS  Google Scholar 

  10. Nakamura M and Skinner SM (1955) J Polym Sci 18: 423

    Article  CAS  Google Scholar 

  11. Müller FH (1969) Thermodynamics of deformation, In: Rheology, vol 5, 417, Academic New York

    Google Scholar 

  12. Lazurkin YuS (1954) Doctor dissertation, IFP AN SSSR, Moscow

    Google Scholar 

  13. Pokrovsky EM (1985) Candidate Dissertation, Institute of Machinery Moscow

    Google Scholar 

  14. Badami DV, Chappel FP, Culpin MF, Madoc Jones D and Tranter TC (1961) Rheol Acta 1: 639

    Article  CAS  Google Scholar 

  15. Arakawa S (1969) In: Fiber Formation and Development of its Fine Structure, Kagaku Do** Kyoto

    Google Scholar 

  16. Lazurkin YuS (1958) J Polym Sci 30: 595

    Article  CAS  Google Scholar 

  17. Vincent PI (1960) Polmyer 1: 7

    Article  CAS  Google Scholar 

  18. Entgelter Ad, Müller FH (1958) Kolloid Z 157: 89

    Article  Google Scholar 

  19. Peterlin, A (1971) J Mater Sci 6: 490

    Article  CAS  Google Scholar 

  20. Meinel G and Peterlin A (1971) J Polym Sci Part A-2 9: 67

    Article  CAS  Google Scholar 

  21. Wunderlich B (1973) Macromolecular Physics, voll, Academic New York

    Google Scholar 

  22. Marikhin VA and Mjasnikova LP (1977) Supermolecular Structure of Polymers [in Russian], Leningrad: Khimija

    Google Scholar 

  23. Horsley RA and Nancarrow HA (1951) Brit J Appl Phys 2: 345

    Article  CAS  Google Scholar 

  24. Kargin VA and Sogolova TI (1953) Zh Ph Ch 27: 1039; 1208; 1213

    Google Scholar 

  25. Baranov VG, Prenkel SYa, Volkov TI and Gasparian KA (1969) Solid State Physics (FTT) 11: 1220

    CAS  Google Scholar 

  26. Flory PJ (1956) J Am Chem Soc 78: 5222

    Article  CAS  Google Scholar 

  27. Beliaev OF and Zelenev YuV (1980) Vysokomol Soedin B22: 471

    Google Scholar 

  28. Juska T and Harrison IR (1982) Polym Eng Rev 2: 13

    CAS  Google Scholar 

  29. Godovsky YuK (1969) Vysokomol Soedin A11: 2129

    Google Scholar 

  30. Peterlin A (1979) In: Ultra-High Modulus Polymers, Appl Sci Publ London

    Google Scholar 

  31. Peterlin A (1987) Colloid Polym Sci 265: 357

    Article  CAS  Google Scholar 

  32. Müller FH and Entgelter Ad (1957) Kolloid Z 150: 156

    Article  Google Scholar 

  33. Andrianova GP, Kargin VA and Kechekjan AS (1970) Vysokomol Soedin A12: 2424 (1971)

    Google Scholar 

  34. Andrianova GP, Kargin VA and Kechekjan AS (1970) J Polym Sci Part A-2, 9: 1919

    Article  Google Scholar 

  35. Andrianova GP, Popov YuV and Arutyunov BA (1976) Vysokomol Soedin A18: 2311 (1978)

    Google Scholar 

  36. Andrianova GP, Popov YuV and Arutyunov BA (1976) J Polym Sci Polym Phys Ed 16: 1139

    Article  Google Scholar 

  37. Barenblatt GI (1970) Izv AN SSR, Mech.tverdogo tela, n5, 121

    Google Scholar 

  38. Barenblatt GI (1964) Appl Math Mech 28: 1048

    Google Scholar 

  39. Matkowsky BJ and Sivashinsky GI (1979) Quarterly Appl Mathem 37: 23

    Google Scholar 

  40. Pakula T and Fisher EW (1981) J Polym Sci Polym Phys Ed 19: 1705

    Article  CAS  Google Scholar 

  41. Godovsky YuK (1976) Thermophysical Methods of Polymers Chracterization [in Russian] Khimija Moscow

    Google Scholar 

  42. Andrianova GP, Popov YuV, Artamonova SD and Arutyunov BA (1977) Vysokomol Soedin A19: 1230

    Google Scholar 

  43. Physical Processes of Plastik Deformation at Low Temperatures [in Russian], Naukova Dumka Kiev 1974

    Google Scholar 

  44. Klyavin OV (1975) Doctor dissertation, Ioffe Physical Technical Institute Leningrad

    Google Scholar 

  45. Malygin GA (1975) Phiz Met Metalloved 40: 21

    Google Scholar 

  46. Petuchov BV (1977) Solid State Physics (FTT) 19: 397

    Google Scholar 

  47. Estrin Y and Kubin LP (1980) Scripta Metallurgica 14: 1359

    Article  Google Scholar 

  48. Ivanchenko LG and Soldatov VP (1981) Phiz Met Metalloved 52: 183

    CAS  Google Scholar 

  49. Godovsky YuK (1972) Doctor dissertation, Karpov Institute of Physical Chemistry Moscow

    Google Scholar 

  50. Nazarenko SI (1988) Candidate dissertation, Institute of Chemical Physics USSR Academy of Sciences Moscow;

    Google Scholar 

  51. Salomatina OB, Nazarenko SI, Rudnev SN and Oleinik EF (1988) Mech of Composite Materials N6: 979;

    Google Scholar 

  52. Salomatina OB, Nazarenko SI, Rudnev SN and Oleinik EF (1991) Colloid Polym Sci 269: 460

    Article  Google Scholar 

  53. Adams GW and Farris RJ (1988) J Polym Sci Polym Phys Ed 26: 433

    Article  CAS  Google Scholar 

  54. Oleinik EF (1989) Progr Colloid Polym Sci 80: 140

    Article  CAS  Google Scholar 

  55. Bever MB, Holt DL and Titchener AL (1973) In: Progress in Material Science, vol 17, pp. 1–190

    Google Scholar 

  56. Bolshanina MA and Panin VE (1957) In: Issled Phiz Tverd Tela, pp. 193–233 USSR Academy of Sciences Publish Moscow

    Google Scholar 

  57. Chen HS (1976) Appl Phys Lett 29: 328

    Article  CAS  Google Scholar 

  58. Escaig B (1984) Polym Eng Sci 24: 737

    Article  CAS  Google Scholar 

  59. Kaush HH (1978) Polymer fracture, Springer Berlin Heidelberg New York

    Google Scholar 

  60. Prest WM and Roberts J (1981) Ann N Y Acad Sci 371: 67

    CAS  Google Scholar 

  61. Bershtein VA and Egorov VM (1990) DSC in Physical Chemistry of Polymers [in Russian], Khimija Leningrad, Ch. 6

    Google Scholar 

  62. Bershtein VA and Egorov VM (1984) Solid State Physics (FTT) 26: 1987

    CAS  Google Scholar 

  63. Stolting J and Müller FH (1970) Kolloid Z Z Polym 238: 459; 240: 790

    Article  Google Scholar 

  64. Müller FH (1959) Kolloid Z 165: 96

    Article  Google Scholar 

  65. Oleinik EF (1987) Polymer J 19: 105

    Article  CAS  Google Scholar 

  66. Bershtein VA and Pertzev NA (1984) Acta Polym 35: 575

    Article  CAS  Google Scholar 

  67. Bershtein VA, Razguliaeva LG, Sinani AV and Stepanov VA (1976) Solid State Physics (FTT) 18: 3017

    CAS  Google Scholar 

  68. Anischuk TA, Bershtein VA, Galperin VM et al (1981) Vysokomol Soedin A23: 963

    Google Scholar 

  69. Rung T and Li J (1986) J Polym Sci Polym Chem Ed 24: 2433

    Article  Google Scholar 

  70. Weitz A and Wunderlich B (1974) J Polym Sci Polym Phys Ed 12: 2473

    Article  CAS  Google Scholar 

  71. Prest WM and Roberts J (1984) Contemp Top Polym Sci Proc US-Jap Polym Symp NY, pp. 855–870

    Google Scholar 

  72. Komkov YuA and Shishkin NI (1972) Vysokomol Soedin B14: 295

    Google Scholar 

  73. Peterlin A and Meinel G (1965) J Appl Phys 36: 3028

    Article  CAS  Google Scholar 

  74. Fischer EW and Hinrichsen G (1966) Kolloid Z Z Polym 213: 28

    Article  CAS  Google Scholar 

  75. Illers KH (1970) Angew Makromol Chem 12: 89

    Article  CAS  Google Scholar 

  76. Peterlin A (1967) J Polym Sci Part C, N18: 123

    Google Scholar 

  77. Kubat J, Peterman J and Rigdhal M (1975) Colloid Polym Sci 253: 875

    Article  CAS  Google Scholar 

  78. Gerasimov VI and Tsvankin DYa (1970) Vysokomol Soedin A12: 2599

    Google Scholar 

  79. Genin YaV, Gerasimov VI and Tsvankin DYa (1973) Vysokomol Soedin A15: 1798

    Google Scholar 

  80. Zhorin VA, Godovsky YuK and Enikolopian NS (1982) Vysokomol Soedin A24: 953

    Google Scholar 

  81. Cannon SL, McKenna GB and Statton WO (1976) J Polym Sci Macromol Revs 11: 1

    Article  Google Scholar 

  82. Park IK and Noetbar HD (1975) Colloid Polym Sci 253: 825

    Google Scholar 

  83. Petermann I and Schultz D (1978) J Mater Sci 13: 50

    Article  CAS  Google Scholar 

  84. Goritz D and Müller FH (1974) Colloid Polym Sci 252: 862

    Article  Google Scholar 

  85. Efimov AV, Bulaev VM et al (1986) Vysokomol Soedin A28: 1750

    Google Scholar 

  86. Bulaev VM (1986) Candidate dissertation, Chemical Department, Lomonosov State University Moscow

    Google Scholar 

  87. Efimov AV, Bulaev VM et al (1986) Vysokomol Soedin A28: 2341

    Google Scholar 

  88. Efimov AV, Bulaev VM et al (1987) Vysokomol Soedin A29: 1013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Godovsky, Y.K. (1992). Thermodynamic Behavior of Solid Polymers in Plastic Deformation and Cold Drawing. In: Thermophysical Properties of Polymers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51670-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51670-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51672-6

  • Online ISBN: 978-3-642-51670-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation