Neuronal and Hormonal Control of Tyrosine Hydroxylase and Phenylethanolamine N-Methyltransferase Activity

  • Conference paper
New Aspects of Storage and Release Mechanisms of Catecholamines

Part of the book series: Bayer-Symposium ((BAYER-SYMP,volume 2))

  • 43 Accesses

Abstract

There are a variety of regulatory factors in the control of the biosynthesis of the neurotransmitter noradrenaline and the adrenal medullary hormone adrenaline. Increased sympathoadrenal activity causes an immediate increase in the formation of noradrenaline from tyrosine in the sympathetic nerve terminals [Alousi and Weiner, 1966 ; Sedvall and Kopin, 1967 (1)] and in the adrenal medulla (Gordon et al., 1966). This rapid change in catecholamine synthesis is due to an end-product inhibition of tyrosine hydroxylase (Spector et al., 1967) and/or an increase of cofactor or substrate concentration [Sedvall and Kopin, 1967 (2)]. In spite of the more rapid conversion of tyrosine to noradrenaline after increased activity of the sympathetic nervous system, no elevation in the in vitro activity of tyrosine hydroxylase activity has been observed (Thoa and Kopin, personal communication). Recent work in our laboratory has shown that the synthesis of tyrosine hydroxylase, the rate limiting step in the catecholamine biosynthesis (Levitt et al., 1965) and phenylethanolamine N-methyltransferase (PNMT), the final step in adrenaline formation, is regulated by the activity of the sympathetic nervous system and by pituitary and corticoid hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alousi, A., Weiner, N.: The regulation of norepinephrine synthesis in sympathetic nerves: Effect of nerve stimulation, cocaine and catecholamine-releasing agents. Proc. nat. Acad. Sci. (Wash.) 56, 1491–1496 (1966).

    Article  CAS  Google Scholar 

  • Axelrod, J.: Purification and properties of phenylethanolamine N-methyltransferase. J. biol. Chem. 237, 1657–1660 (1962).

    PubMed  CAS  Google Scholar 

  • Coupland, R. E.: On the morphology and adrenaline-noradrenaline content of chromaffin tissue. J. Endocr. 9, 194–203 (1953).

    Article  PubMed  CAS  Google Scholar 

  • — Corticosterone and methylation of noradrenaline by extradrenal chromaffin tissue. J. Endocr. 41, 487–490 (1968).

    Article  PubMed  CAS  Google Scholar 

  • De Quattro, V., Maronde, R., Nagatsu, T., Alexander, N.: Altered norepinephrine synthesis and storage in the hypertensive buffer denervated rabbit. Circulat. Res. 24, 545–555 (1969).

    Google Scholar 

  • Dontas, A. S., Nickerson, M.: Central and peripheral components of the action of ganglionic blocking agents. J. Pharmacol. exp. Ther. 120, 147–159 (1957).

    PubMed  CAS  Google Scholar 

  • Gordon, R., Spector, S., Sjoerdsma, A., Udenfriend, S.: Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold. J. Pharmacol. exp. Ther. 153, 440–447 (1966).

    PubMed  CAS  Google Scholar 

  • Iggo, A., Vogt, M.: Preganglionic sympathetic activity in normal and reserpine-treated cats. J. Physiol. (Lond.) 150, 114–133 (1960).

    CAS  Google Scholar 

  • Kirschner, N., Goodall, McC.: The formation of adrenaline from noradrenaline. Biochim. biophys. Acta (Amst.) 24, 658–659 (1957).

    Article  Google Scholar 

  • Landsberg, L., Axelrod, J.: Influence of pituitary, thyroid and adrenal hormones on norepinephrine turnover and metabolism in the rat heart. Circulat. Res. 22, 559–571 (1968).

    PubMed  CAS  Google Scholar 

  • Leach, C. S., Lipscomb, H. H.: Adrenal cortical control of adrenal medullary function. Proc. Soc. exp. Biol. (N. Y.) 130, 448 (1969).

    CAS  Google Scholar 

  • Levitt, M., Spector, S., Sjoerdsma, A., Udenfriend, S.: Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea pig heart. J. Pharmacol. exp. Ther. 148, 1–8 (1965).

    PubMed  CAS  Google Scholar 

  • Margolies, F., Roffi, J., Jost, A.: Norepinephrine in fetal rats. Science 154, 275–276 (1966).

    Article  Google Scholar 

  • Mueller, R. A., Thoenen, H., Axelrod, J.: (1) Compensatory increase in adrenal tyrosine hydroxylase activity after chemical sympathectomy. Science 163, 468–469 (1969).

    Article  PubMed  CAS  Google Scholar 

  • — — — (2) Increase in tyrosine hydroxylase activity after reserpine administration. J. Pharmacol. exp. Ther. 169, 74–79 (1969).

    PubMed  CAS  Google Scholar 

  • — — — (3) Inhibition of trans-synaptically increased tyrosine hydroxylase activity by cycloheximide and actinomycin D. Molec. Pharmacol. 5, 463–469 (1969).

    CAS  Google Scholar 

  • — — — (1) Effect of pituitary and ACTH on the maintenance of basal tyrosine hydroxylase activity in the rat adrenal gland. Endocrinology (in press).

    Google Scholar 

  • — — — (2) Inhibition of neuronally induced tyrosine hydroxylase by nicotinic receptor blockade. Europ. J. Pharmacol. (in press).

    Google Scholar 

  • Sedvall, G. C., Kopin, I. J.: (1) Acceleration of norepinephrine synthesis in the rat submaxillary gland in vivo during sympathetic nerve stimulation. Life Sci. 6, 45–52 (1967).

    Article  PubMed  CAS  Google Scholar 

  • — — (2) Influence of sympathetic denervation and nerve impulse activity of tyrosine hydroxylase in the rat submaxillary gland. Biochem. Pharmacol. 16, 36–46 (1967).

    Article  Google Scholar 

  • Spector, S., Gordon, R. Sjoerdsma, A., Udenfriend, S.: End-product inhibition of tyrosine hydroxylase as a possible mechanism for regulating norepinephrine synthesis. Molec. Pharmacol. 8, 549–555 (1967).

    Google Scholar 

  • Thoenen, H., Mueller, R. A., Axelrod, J.: (1) Transsynaptic induction of adrenal tyrosine hydroxylase. J. Pharmacol. exptl. Ther. 169, 249–254 (1969).

    CAS  Google Scholar 

  • — — — (2) Increased tyrosine hydroxylase activity after drug induced alteration of sympathetic transmission. Nature (Lond.) 221, 1264 (1969).

    Article  CAS  Google Scholar 

  • — — — Neuronally dependent induction of adrenal phenylethanolamine N-methyltransferase by 6-hydroxydopamine. Biochem. Pharmacol. (in press).

    Google Scholar 

  • — Tranzer, J. P.: Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Pharmak. U. exp. Path. 261, 271–278 (1968).

    CAS  Google Scholar 

  • Wurtman, R. J.: Control of epinephrine synthesis in the adrenal medulla by the adrenal cortex: hormonal specificity and dose response characteristics. Endocrinology 79, 608–614 (1966).

    Article  PubMed  CAS  Google Scholar 

  • — Axelrod, J.: Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroid. J. biol. Chem. 241, 2301–2305 (1966).

    PubMed  CAS  Google Scholar 

  • — — Tramezzani, J.: Distribution of the adrenaline-forming enzyme in the adrenal gland of a snake Xenodon merremii. Nature (Lond.) 215, 879–880 (1967).

    Article  CAS  Google Scholar 

  • — — Vesell, E., Ross, G.: Species differences in inducibility of phenylethanolamine N-methyltransferase. Endocrinology 82, 584–590 (1968).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag

About this paper

Cite this paper

Axelrod, J., Mueller, R.A., Thoenen, H. (1970). Neuronal and Hormonal Control of Tyrosine Hydroxylase and Phenylethanolamine N-Methyltransferase Activity. In: Schümann, HJ., Kroneberg, G. (eds) New Aspects of Storage and Release Mechanisms of Catecholamines. Bayer-Symposium, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46241-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46241-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46243-6

  • Online ISBN: 978-3-642-46241-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation