Abstract

The theory of the laminar boundary layer on a sphere of radius a rotating, without translation, about a diameter with angular velocity Ω was first considered by Howarth [6]. He showed that a consistent solution can be obtained on the assumption that there are two boundary layers, originating at opposite ends of the diameter of rotation and converging towards each other at the equator. Near the poles each boundary layer is the same as that on a disc rotating about its axis in a fluid otherwise at rest. In this boundary layer, first discussed by Von Kármán [8], fluid is drawn towards the disc and also moves radially outwards from the axis. As a result of the curvature of the sphere the boundary layers on the sphere must be modified as they spread outwards from the poles and by applying the momentum integral Howarth was able to extend them as far as the equatorial plane. According to his solution the boundary layers at the equator were infinitely thick with zero longitudinal components of velocity but his view was that this would be unlikely in the exact solution. In any case the boundary layers from the two poles must meet at the equator and the parabolic nature of their governing equations made them inadequate to describe the flow in its vicinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 49.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Batchelor, G. K.: Quart. J. of Mech. and App. Maths. 4, 29 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bödewadt, U.: ZAMM, 20, 241 (1940).

    Article  Google Scholar 

  3. Fettis, H. E.: private communication.

    Google Scholar 

  4. Glauert, M. B.: J. Fluid Mech. 1, 625 (1956).

    Article  MathSciNet  Google Scholar 

  5. Glauert, M. B., and M. J. Ligitmll: Proc. Roy. Soc. A. 230, 188 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  6. Howarth, L.: Phil. Mag. Ser. 7, 42, 1308 (1951).

    MathSciNet  Google Scholar 

  7. Kaplun, S: ZAMP 5, 111 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  8. v. Karman, T.: ZAMM, 1, 233 (1921).

    Article  MATH  Google Scholar 

  9. Mangler, W.: Rep. Aero. Res. Conne. 740 (1946) No. 9.

    Google Scholar 

  10. Moore, F. K.: Advances in Mechanics Vol. IV (1956) Academic Press, 166.

    Google Scholar 

  11. Nigam, S D: ZAMP 5, 151 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  12. Picna, K. S.: Thesis, University of Minnesota (1957).

    Google Scholar 

  13. Richardson, E. A.: Phil. Mag. Ser. 7, 11, 1215 (1941).

    Google Scholar 

  14. Sciultz-Grunow, F.: ZAMM 15, 191 (1935).

    Article  Google Scholar 

  15. Squire, H. B.: 50 Jahre Grenzschichtforschung eds. H. Görtler and W. Toll-Mien. Vieweg 1955, S. 47.

    Google Scholar 

  16. Stewartson, K.: Quart. J. of Mech. and App. Maths. 10, 134 (1954).

    Google Scholar 

  17. Stewartson, K.: Quart. of App. Maths. 13, 113 (1955).

    MathSciNet  MATH  Google Scholar 

  18. Stewartson, K.: Proc. Cam. Phil. Soc. 49, 333 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  19. Rosenblatt, M. A.: Solutions exactes des équations du mouvement des liquides visqueux. Mémorial des Sciences Mathématiques, Fasc. LXXII, Paris: Gauthier-Villars, 1935.

    Google Scholar 

  20. Berger, A. RATIB: Sur quelques cas d’integration des équations du mouvement d’un fluide visqueux incompressible. Paris et Lille: A. Tiffin-Lefort, 1936.

    Google Scholar 

  21. Gels, T.: Ähnliche Grenzschichten an Rotationskörpern. „50 Jahre Grenzschichtforschung“, Braunschweig: Vieweg, 1955, S. 294–303.

    Google Scholar 

  22. Geis, T.: Elementarer Existenzbeweis für die Grenzschichtströmung an einer Klasse rotierender Körper ZAMM 36, 222–229 (1956).

    MathSciNet  MATH  Google Scholar 

  23. Kobashi, Y.: Journal of Science of the Hiroshima University, Japan, Series A, 20, No. 3 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag OHG., Berlin/Göttingen/Heidelberg

About this chapter

Cite this chapter

Stewartson, K. (1958). On rotating laminar boundary layers. In: Görtler, H. (eds) Grenzschichtforschung / Boundary Layer Research. Internationale Union für theoretische und angewandte Mechanik / International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45885-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45885-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02273-2

  • Online ISBN: 978-3-642-45885-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation