MOSFET: Basics, Characteristics, and Characterization

  • Chapter
  • First Online:
High Permittivity Gate Dielectric Materials

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 43))

Abstract

This chapter attempts to provide a theoretical basis for the Metal Oxide (Insulator) Semiconductor (MOS/MIS) Structure and the MOS/MIS Field Effect Transistor (MOSFET/MISFET), their characteristics, and their characterization (parameter extraction); the theoretical treatment starts from the first principles. While deriving the mathematical relations, assumptions have been avoided as far as possible. A comprehensive treatment is included which covers the important aspects of the function, mechanism, and operation of the MOS/MIS devices; in particular topics have been covered which are relevant to all the later chapters of the book and which will aid in reading the rest of this book. We begin this chapter with the theory of the classical MOS structure (non-leaky and SiO2 single gate dielectric) and the classical MOSFET and then graduate to the MOS structure and the MOSFET with the high-k gate stack and the high mobility channels. Various aspects of the MOS/MOSFET devices analyzed in this chapter include the energy band profiles, circuit representations, electrostatic analysis (charge–voltage and capacitance–voltage relations), drain current versus drain voltage relation, quantum-mechanical phenomena (wave function penetration, tunneling, carrier confinement), nature of the high-k gate stack traps, and the pseudo-Fermi function inside the gate stack and the occupancy of the gate stack traps. Features such as capacitance–voltage (C–V) characteristics, flat-band and threshold voltages (VFB and VT), VT versus EOT characteristics permeate the chapters; hence these features and characteristics such as conductance–voltage (G–V) characteristics have been discussed. A significant part of this chapter contains topics which are rarely seen in the literature and are yet to be well understood. As these topics (composition of the high-k gate stack, nature of the high-k gate stack charges, effects of the degradation factors) are of vital significance for the progress of the high-k gate stack technology, we have tried to analyze these issues. The final part of this chapter treats the various methods available for characterization of the high-k gate stacks, in particular, for the determination of the trap parameters—trap density, trap energy, trap capture cross-section, and the trap location inside the gate stack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967)

    Google Scholar 

  2. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  3. E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  4. E.H. Nicollian, A. Goetzberger, The Si-SiO2 interface—electrical properties as determined by the MIS conductance technique. Bell Syst. Tech. J. 46, 1055 (1967)

    Google Scholar 

  5. E.H. Rhoderic, R.H. Williams, Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1988)

    Google Scholar 

  6. S.M. Sze (ed.), Modern Semiconductor Devices (Wiley, New York, 1998)

    Google Scholar 

  7. H. Lueth, Surfaces and Interfaces of Solid Materials (Springer, Berlin, 1995)

    Book  Google Scholar 

  8. C.G.B. Garrett, W.H. Brattain, Physical theory of semiconductor surfaces. Phys. Rev. 99, 376 (1955)

    Article  Google Scholar 

  9. S. Kar, Interface charge characteristics of MOS structures with different metals on steam grown oxides. Solid-St. Electron. 18, 723–732 (1975)

    Article  Google Scholar 

  10. S. Kar, Determination of Si-metal work function differences by MOS capacitance technique. Solid-St. Electron. 18, 169–181 (1975)

    Article  Google Scholar 

  11. H.K.J. Ihantola, J.L. Moll, Solid-State Electron. 7, 423 (1964)

    Article  Google Scholar 

  12. S.R. Hofstein, F.P. Heiman, Proc. IEEE 51, 1190 (1963)

    Article  Google Scholar 

  13. C.G. Parker, G. Lucovsky, J.R. Hauser, Ultrathin oxide–nitride gate dielectric MOSFET’s. IEEE Electron Device Lett. 19(4), 106 (1998)

    Article  Google Scholar 

  14. S. Kar, M. Houssa, S. Van Elshocht, D. Misra, K. Kita (eds.), Physics and technology of high-Κ materials IX. ECS Trans. 41(3) (2011), ch. 8, ch. 7

    Google Scholar 

  15. S. Kar, S. Van Elshocht, D. Misra, K. Kita (eds.), Physics and technology of high-Κ materials X. ECS Trans. 41(3) 2012

    Google Scholar 

  16. S. Kar, S. Rawat, ECS Trans. 16(5), 443 (2008)

    Article  Google Scholar 

  17. S. Kar, ECS Trans. 25(8), 399 (2009)

    Article  Google Scholar 

  18. T. Hori, Gate Dielectrics and MOS ULSIs (Springer, Berlin, 1997). (ch. 3)

    Book  Google Scholar 

  19. S.M. Sze, Modern Semiconductor Device Physics (Wiley, New York, 1998). (ch. 3)

    Google Scholar 

  20. C.C. Hu, Modern Semiconductor Devices for Integrated Circuits (Prentice Hall, Upper Saddle River, 2009). (ch. 6)

    Google Scholar 

  21. S. Kar, IEEE Trans. Electron Devices 50, 2112 (2003)

    Article  Google Scholar 

  22. S. Kar, S. Rawat, S. Rakheja, D. Reddy, IEEE Trans. Electron Devices 52, 1187 (2005)

    Article  Google Scholar 

  23. R. Choi, S.J. Rhee, J.C. Lee, B.H. Lee, G. Bersuker, IEEE Electron Device Lett. 26, 197 (2005)

    Article  Google Scholar 

  24. G. Bersuker et al., IEEE Trans. Device Mater. Reliab. 7, 138 (2007)

    Article  Google Scholar 

  25. A. Toriuma, K. Kita, ECS. Trans. 19(1), 243 (2009)

    Google Scholar 

  26. J.K. Schaeffer et al., Appl. Phys. Lett. 85, 1826 (2004)

    Article  Google Scholar 

  27. H. Park et al., IEEE Electron Device Lett. 26, 725 (2005)

    Article  Google Scholar 

  28. R. **e, T.H. Phung, W. He, M. Yu, C. Zhu, IEEE Trans. Electron Devices ED-56, 1330 (2009)

    Google Scholar 

  29. Y.-T. Chen et al., Appl. Phys. Lett. 96, 253502 (2010)

    Article  Google Scholar 

  30. Y. Wang et al., ECS Trans. 33, 487 (2010)

    Article  MATH  Google Scholar 

  31. Y. Wang et al., ECS Trans. 41, 243 (2011)

    Article  Google Scholar 

  32. R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, M. Metz, High-k/Metal–gate stack and its MOSFET characteristics. IEEE Electron Device Lett. 25(6), 408 (2004)

    Article  Google Scholar 

  33. N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nat. Mater. 5, 204 (2006)

    Google Scholar 

  34. H. Watanabe, D. Matsushita, K. Muraoka, IEEE Trans. Electron Devices 53, 1323 (2006)

    Article  Google Scholar 

  35. S. Borowitz, Fundamentals of Quantum Mechanics (W. A. Benjamin, New York, 1967)

    MATH  Google Scholar 

  36. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1961)

    MATH  Google Scholar 

  37. T. Ando, A. B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)

    Google Scholar 

  38. H. Lueth, Surfaces and Interfaces in Solid Materials (Springer, Berlin, 1995)

    Book  Google Scholar 

  39. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1967)

    Google Scholar 

  40. J.R. Hauser, K. Ahmed, Characterization of ultra-thin oxides using electrical CV and IV measurements, in International Conference on Characterization and Metrology for ULSI Technology Proceedings (1998) pp. 235–239

    Google Scholar 

  41. S. Krishnamurthy, S. Jallepalli, C.-F. Yeap, K. Hasnat, A.F. Tasch, C.M. Maziar, A computationally efficient model for inversion layer quantization effects in deep submicron N-channel MOSFETs. IEEE Trans. Electron Devices 43(1), 90–96 (1996)

    Article  Google Scholar 

  42. L.F. Register, A.F. Tasch, S.K. Banerjee, Understanding the effects of wave function penetration on the inversion layer capacitance of NMOSFETs. Electron Device Lett. 22(3), 145–147 (2001)

    Article  Google Scholar 

  43. V. Heine, Theory of surface state. Phys. Rev. 138, A1689–A1696 (1965). MIGS

    Article  Google Scholar 

  44. A. Rose, Concepts in Photoconductivity and Allied Problems (Wiley Interscience, New York, 1963)

    Google Scholar 

  45. D. Muñoz Ramo, J.L. Gavartin, A.L. Shluger, G. Bersuker, Phys. Rev. B 75, 205336 (2007)

    Article  Google Scholar 

  46. I.E. Tamm, Z. Physik 76, 849 (1932)

    Article  Google Scholar 

  47. W. Shockley, Phys. Rev. 56, 317 (1939)

    Article  MATH  Google Scholar 

  48. G.J. Gerardi, E.H. Poindexter, P.J. Caplan, N.M. Johnson, Interface traps and Pb centers in oxidized (100) silicon wafers. Appl. Phys. Lett. 49, 348 (1986)

    Article  Google Scholar 

  49. A.H. Edwards, Theory of the Pb center at the <111> Si/SiO2 interface. Phys. Rev. B 36, 9638 (1987)

    Article  Google Scholar 

  50. J. Dong, D.A. Drabold, Atomistic structure of band-tail states in amorphous silicon. Phys. Rev. Lett. 80(9), 1928–1931 (1998)

    Article  Google Scholar 

  51. S. Kar, W.E. Dahlke, Interface states in MOS structures with 20–40 Åthick SiO2 films on non-degenerate Si. Solid-State Electron. 15, 221–232 (1972)

    Article  Google Scholar 

  52. A.V. Kimmel, P.V. Sushko, A.L. Shluger, G. Bersuker, ECS Trans. 19(2), 3 (2009)

    Article  Google Scholar 

  53. A. Toriumi, K. Kita, ECS Trans. 19(1), 243 (2009)

    Google Scholar 

  54. H. Jagannathan, V. Narayanan, S. Brown, ECS-Trans. 16, 19 (2008)

    Article  Google Scholar 

  55. J. Tersoff, Schottky barrier heights and the continuum of gap states. Phys. Rev. Lett. 52, 465–468 (1984)

    Article  Google Scholar 

  56. M.R. Visokay, J.J. Chambers, A.L.P. Rotondaro, A. Shanware, L. Colombo, Appl. Phys. Lett. 80, 3183 (2002)

    Article  Google Scholar 

  57. J.-H. Lee et al., in 2002 Symposium on VLSI Technology Digest of Technical Papers, 2002

    Google Scholar 

  58. Y.H. Wu, M.Y. Yang, A. Chin, W.J. Chen, C.M. Kwei, IEEE Electron Device Lett. 21, 341 (2000)

    Article  MATH  Google Scholar 

  59. H. Harris, K. Choi, N. Mehta, A. Chandolu, N. Biswas, G. Kipshidze, S. Nikishin, S. Gangopapadhyay, H. Temkin, Appl. Phys. Lett. 81, 1065 (2002)

    Article  Google Scholar 

  60. C.N. Berglund, IEEE Trans. Electron Devices 13, 701 (1966)

    Article  Google Scholar 

  61. L.M. Terman, Solid-State Electron. 5, 285 (1962)

    Article  Google Scholar 

  62. A. Ali, H. Madan, S. Koveshnikov, S. Datta, ECS Trans. 25(6), 271 (2009)

    Article  Google Scholar 

  63. M. Heyns et al., ECS Trans. 25(6), 51 (2009)

    Article  Google Scholar 

  64. S. Kar, C. Miramond, D. Vuillaume, Properties of electronic traps at silicon/1-octadecene interfaces. Appl. Phys. Lett. 78, 1288 (2001)

    Article  Google Scholar 

  65. J. McNutt, C.T. Sah, J. Appl. Phys. 46, 3909 (1975)

    Article  Google Scholar 

  66. J. Maserjian, G. Petersson, C. Svensson, Solid-State Electron. 17, 335 (1974)

    Article  Google Scholar 

  67. J. Maserjian, in The Physics and Chemistry of SiO2 and the Si/SiO2 Interface, ed. by C.R. Helms, B.E. Deal (Plenum Press, New York, 1988)

    Google Scholar 

  68. B. Ricco, P. Olivo, T.N. Nguyen, T.-S. Kuan, G. Ferriani, IEEE Trans. Electron Devices 35, 432 (1988)

    Article  Google Scholar 

  69. K. Ahmad, E. Ibok, G. Bains, D. Chi, B. Ogle, J.J. Wortman, J.R. Hauser, IEEE Trans. Electron Devices 47, 1349 (2000)

    Article  Google Scholar 

  70. J.S. Brugler, P.G.A. Jespers, IEEE Trans. Electron Devices 16, 207 (1969)

    Article  Google Scholar 

  71. G. Groeseneken, H.E. Maes, N. Beltran, R.F. deKeersmaecker, IEEE Trans. Electron Devices 31, 42 (1984)

    Article  Google Scholar 

  72. S. Kar, S. Rawat, ECS Trans. 16(5), 111 (2008)

    Article  Google Scholar 

  73. K. Shiraishi, K. Yamada, K. Torii, Y. Akasaka, K. Nakajima, M. Konno, T. Chikyo, H. Kitajima, T. Arikado, Y. Nara, Thin Solid Films 508, 305 (2006)

    Article  Google Scholar 

  74. T.C. Poon, H.C. Card, J. Appl. Phys. 51, 6273 (1980)

    Article  Google Scholar 

  75. S. Kar, S. Varma, J. Appl. Phys. 58, 4256 (1985)

    Article  Google Scholar 

  76. B. Hoeneisen, C.A. Mead, Solid-State Electron. 15, 819 (1972)

    Article  Google Scholar 

  77. S. Kar, Characterization of silicon MOS tunnel diodes. IEDM Tech. Dig. 79 (1976)

    Google Scholar 

  78. S. Kar, Two limiting thinnesses of the ultrathin gate oxides, in Silicon Nitride and Silicon Dioxide Thin Insulating Films, ed. by K.B. Sundaram, M.J. Deen, D. Landheer, W.D. Brown, D. Misra, M.D. Allendorf, R.E. Sah, Electrochem. Soc. Proc., vol PV-2001-7, 60 (2001)

    Google Scholar 

  79. R. Chau, B. Boyanov, B. Doyle, M. Doczy, S. Datta, S. Hareland, B. **, J. Kavalieros, M. Metz, Silicon nano-transistors for logic applications. Physica E 19, 1 (2003)

    Article  Google Scholar 

  80. D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt, G. Timp, The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758 (1999). 24 June

    Article  Google Scholar 

  81. S. Kar, S. Varma, J. Appl. Phys. 54, 1988 (1983)

    Article  Google Scholar 

  82. R. Nieh, R. Choi, S. Gopalan, K. Onishi, C.S. Kang, H.-J. Cho, S. Krishnan, J.C. Lee, Evaluation of silicon surface nitridation effects on ultra-thin ZrO2 gate dielectrics. Appl. Phys. Lett. 81, 1663–1665 (2002)

    Article  Google Scholar 

  83. C.H. Lee, J.J. Lee, W.P. Bai, S.H. Bae, J.H. Sim, X. Lei, R.D. Clark, Y. Harada, M. Niwa, D.L. Kwong, Self-aligned ultra thin HfO2 CMOS transistors with high quality CVD TaN gate electrode, in 2002 Symposium on VLSI Technology Digest of Technical Papers

    Google Scholar 

  84. Y.-S. Lin, R. Puthenkovilakam, J.P. Chang, Dielectric property and thermal stability of HfO2 on silicon. Appl. Phys. Lett. 81, 2041–2043 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samares Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kar, S. (2013). MOSFET: Basics, Characteristics, and Characterization. In: Kar, S. (eds) High Permittivity Gate Dielectric Materials. Springer Series in Advanced Microelectronics, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36535-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36535-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36534-8

  • Online ISBN: 978-3-642-36535-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation