Fermentable Sugars from Lignocellulosic Biomass: Technical Challenges

  • Chapter
  • First Online:
Biofuel Technologies

Abstract

Lignocelluloses, the most abundant renewable biomass on earth, are composed mainly of cellulose, hemicellulose, and lignin. Both the cellulose and hemicellulose fractions are polymers of sugars and thereby a potential source of fermentable sugars. Lignin can be used for the production of chemicals, combining heat and power, or for other purposes. Energy crisis and environmental pollution drive the scientific community toward the potential exploitation of lignocellulosic biomass. To crack their complex structures various pretreatment technologies including biological, mechanical, chemical methods, and various other combinational methods are available. We cannot relate the best and common pretreatment method to all types of the lignocellulosic biomass. It mostly depends on the type of lignocellulosic biomass and the desired products. The final aim of pretreatments must be improvement in the hydrolysis rate of lignocellulosic biomass. Currently, there is a large scope to investigate and restore the challenges in the pretreatment processes which finally leads to develop the tailor-made effective pretreatment methods for diverse types of lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya PB, Acharya DK, Modi HA (2008) Optimization for cellulase production by Aspergillus niger using saw dust as substrate. Afr J Biotechnol 7(22):4147–4152

    CAS  Google Scholar 

  • Alvira P, Tomás PE, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  PubMed  CAS  Google Scholar 

  • Azzam M (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health B 24(4):421–433

    Article  Google Scholar 

  • Bailey MJ, Tähtiharju J (2003) Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy. Appl Microbiol Biotechnol 62(2–3):156–162

    Article  PubMed  CAS  Google Scholar 

  • Bärbel GRH, John DF, Kendall PE (1978) Cellulolytic enzyme system of Thermoactinomyces sp. grown on microcrystalline cellulose. Appl Environ Microbiol 36(4):606–612

    Google Scholar 

  • Beldman G, Searle-Van Leeuwen MF, Rombouts FM, Voragen FG (1985) The cellulase of Trichoderma viride. Purification, characterization and comparison of all detectable endoglucanases, exoglucanases and beta-glucosidases. Eur J Biochem 146(2):301–308

    Google Scholar 

  • Biosulfurol (2010) http://biosulfurol-energy.com

  • Bjerre AB, Olesen AB, Fernqvist T (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49:568–577

    Article  PubMed  CAS  Google Scholar 

  • Blue fire ethanol (2010) http://bluefireethanol.com

  • Bochek AM (2003) Effect of hydrogen bonding on cellulose solubility in aqueous and nonaqueous solvents. Russ J Appl Chem 76(11):1711–1719

    Article  CAS  Google Scholar 

  • Boominathan K, Reddy CA (1992) cAMP-mediated differential regulation of lignin peroxidase and manganese-dependent peroxidases production in the white-rot basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci USA 89(12):5586–5590

    Article  PubMed  CAS  Google Scholar 

  • Bothwell B, Edward MWS, Andre PCF (2012) In: Janssen R, Rutz D (eds) New conversion technology for liquid biofuels production in Africa. Bioenergy for Sustainable Development in Africa, p 117–130

    Google Scholar 

  • Bozell JJ (2001) Chemicals and materials from renewable resources. In: Bozell JJ (ed) Chemicals and materials from renewable resources, Washington, DC: ACS Symposium Series; American Chemical Society, p 1–9

    Google Scholar 

  • BP statistical review of world energy June (2011) Available at http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011.pdf. Accessed 30 Jan 2011

  • Broda P, Birch P, Brooks P, Copa-Patino JL, Sinnott ML, Tempelaars C, Wang Q, Wyatt A, Sims P (1994) Phanerochaete chrysosporium and its natural substrate. FEMS Microbiol Rev 13:189–196

    Article  PubMed  CAS  Google Scholar 

  • Broda P, Birch PR, Brooks PR, Sims PF (1996) Lignocellulose degradation by Phanerochaete chrysosporium: gene families and gene expression for a complex process. Mol Microbiol 19:923–932

    Article  PubMed  CAS  Google Scholar 

  • Cara C, Ruiz E, Mercedes B, Paloma M, Ma JN, Eulogio C (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87(6):692–700

    Article  CAS  Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotech 84–86:5–37

    Article  Google Scholar 

  • Chen M, Zhao J, **a L (2009) Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass Bioenerg 33:1381–1385

    Article  CAS  Google Scholar 

  • Chen Y, Sharma-Shivappa R, Deepak K, Chen C (2007) Potential of agricultural residues and hay for bioethanol production. Appl Biochem Biotech 142(3):276–290

    Article  CAS  Google Scholar 

  • CO2 Emissions from fuel combustion: Highlights; International Energy Agency statistics 2011. Available at http://www.iea.org/co2highlights/CO2highlights.pdf. Accessed 30 Jan 2011

  • Copa-Patino JL, Young GK, Broda P (1993) Production and initial characterization of the xylan-degrading system of Phanerochaete chrysosporium. Appl Microbiol Biotechnol 40:69–76

    CAS  Google Scholar 

  • Covert SF, Vanden WA, Cullen D (1992) Structure, organization, and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium. Appl Environ Microbiol 58:2168–2175

    PubMed  CAS  Google Scholar 

  • Dongyang L, Ruifu Z, **ngming Y, Hongsheng W, Dabing X, Zhu T, Qirong S (2011) Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int Biodeter Biodegr 65(5):717–725

    Article  Google Scholar 

  • Dueñas R, Tengerdy RP, Gutierrez CM (1995) Cellulase production by mixed fungi in solid-substrate fermentation of bagasse. World J Microb Biot 11(3):333–337

    Article  Google Scholar 

  • Durand H (1984) Comparative study of cellulases and hemicellulases from four fungi: mesophiles Trichoderma reesei and Penicillium sp. and thermophiles Thielavia errestris and Sporotrichum cellulophilum. Enzyme Microb Technol 6(4):175–180

    Google Scholar 

  • Erdei B, Barta Z, Sipos B, Reczey K, Galbe M, Zacchi G (2010) Ethanol production from mixtures of wheat straw and wheat meal. Biotechnol Biofuels 3:16

    Article  PubMed  Google Scholar 

  • Fan LT, Gharpuray MM, Lee YH (1987) Design and economic evaluation of cellulose hydrolysis processes in cellulose hydrolysis. Springer, New York, pp 169–187

    Google Scholar 

  • Faulon JL, Carlson GA, Hatcher PG (1994) A three-dimensional model for lignocellulose from gymno-spermous wood. Org Geochem 21:1169–1179

    Article  CAS  Google Scholar 

  • Franklin EB (1988) Chemistry of lignocellulose: methods of analysis and consequences of structure. Anim Feed Sci Tech 21:279–286

    Article  Google Scholar 

  • Fred JS (1971) Cellulase Production by Thermomonospora curvata isolated from municipal solid waste compost. Appl Microbiol 22(2):147–152

    Google Scholar 

  • Fred JS (1972) Cellulolytic activity of Thermomonospora curvata: optimal assay conditions, partial purification, and product of the cellulase. Appl Microbiol 24(1):83–90

    Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65

    PubMed  CAS  Google Scholar 

  • Garcia-Aparicio MP, Ballesteros I, González A, Oliva JM, Ballesteros M, Negro MJ (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotech 129(1–3):278–288

    Article  Google Scholar 

  • Ghose TK, Pannir Selvam PV, Ghosh P (1983) Catalytic solvent delignification of agricultural residues: organic catalysts. Biotechnol Bioeng 25(11):2577–2590

    Google Scholar 

  • Ghose TK, Vikram S (1979) Production of cellulases by Trichoderma reesei QM 9414 in fed-batch and continuous-flow culture with cell cycle. Biotechnol Bioeng 21:283–296

    Article  PubMed  CAS  Google Scholar 

  • Glazer AW, Nikaido H (1995) Microbial biotechnology: fundamentals of applied microbiology. Freeman WH (ed) San Francisco, p 340. ISBN 0-71672608-4

    Google Scholar 

  • González G, López-Santín J, Caminal G, Solà C (1986) Dilute acid hydrolysis of wheat straw hemicellulose at moderate temperature: a simplified kinetic model. Biotechnol Bioeng 28(2):288–293

    Google Scholar 

  • Griffin HL, Sloneker JH, Inglett GE (1974) Cellulase production by Trichoderma viride on feedlot waste. Appl Microbiol 27(6):1061–1066

    PubMed  CAS  Google Scholar 

  • Hafedh B, Semia EC, Ali G (2001) Biostoning of denims by Penicillium occitanis (Pol6) cellulases. J Biotechnol 89(2–3):257–262

    Google Scholar 

  • Harmsen PFH, Huijen WJJ, Bermudez LLM, Bakker RRC (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass September 2010, Food and Biobased Research, Wageningen UR, P 1–49 ISBN: 9789085857570 http://www.ecn.nl/nl/. Accessed Jan 2012

  • Harris EE (1949) Wood saccharification in advances in carbohydrate chemistry, vol 4. Academic, New York, pp 153–188

    Google Scholar 

  • Hatakka AI (1983) Pretreatment of wheat straw by white-rot fungi for enzymatic saccharification of cellulose. Appl Microbiol Biotechnol 18:350–357

    Article  CAS  Google Scholar 

  • Holtzapple MT, Ripley EP, Nikolaou M (1994) Saccharification, fermentation, and protein recovery from low-temperature AFEX-treated coastal bermudagrass. Biotechnol Bioeng 44(9):1122–1131

    Google Scholar 

  • Hoshino E, Sasaki Y, Mori K, Okazaki M, Nisizawa K, Kanda T (1993) Electron microscopic observation of cotton cellulose degradation by Exo- and Endo-Type cellulases from Irpex lacteus. J Biochem 114(2):236–245

    Google Scholar 

  • Henriksson G, Nutt A, Henriksson H, Pettersson B, StÃ¥hlberg J, Johansson G, Pettersson G (1999) Endoglucanase 28 (Cel12A), a new Phanerochaete chrysosporium cellulase. Eur J Biochem 259(1–2):88–95

    Article  PubMed  CAS  Google Scholar 

  • Hoshino E, Sasaki Y, Okazaki M, Nisizawa K, Kanda T (1993) Mode of action of exo- and endo-type cellulases from Irpex lacteus in the hydrolysis of cellulose with different crystallinities. J Biochem 114(2):230–235

    PubMed  CAS  Google Scholar 

  • Hsu TA, Ladisch MR, Tsao GT (1980) Alcohol from cellulose. ChemTech 10:315–319

    CAS  Google Scholar 

  • Huang HJ, Ramaswamy S, Tschirner UW, Ramarao BV (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62:1–21

    Article  CAS  Google Scholar 

  • Imai M, Ikari K, Suzuki I (2004) High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment. Biochem Eng J 17(2):79–83

    Article  CAS  Google Scholar 

  • István JS, Gunnar J, Göran P (1996) Optimized cellulase production by Phanerochaete chrysosporium: control of catabolite repression by fed-batch cultivation. J Biotechnol 48(3):221–230

    Article  Google Scholar 

  • Jang HD, Chang KS (2005) Thermostable cellulases from Streptomyces sp.: scale-up production in a 50-l fermenter. Biotechnol Lett 27(4):239–242

    Article  PubMed  CAS  Google Scholar 

  • Jayant M, Rashmi J, Shailendra M, Deepesh Y (2011) Production of cellulase by different co-culture of Aspergillus niger and Penicillium chrysogenum from waste paper, cotton waste and bagasse. J Yeast Fungal Res 2(2):24–27

    CAS  Google Scholar 

  • Kahar P, Taku K, Tanaka S (2010) Enzymatic digestion of corncobs pretreated with low strength of sulfuric acid for bioethanol production. J Biosci Bioeng 110:453–458

    Article  PubMed  CAS  Google Scholar 

  • Ken-Lin C, Thitikorn-among J, Jung-Feng H, Bay-Ming O, Shan-He C, Ratanakhanokchai K (2011) Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass Bioenergy 35:90–95

    Article  Google Scholar 

  • Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77(2):139–144

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Holtzapple MT (2006) Delignification kinetics of corn stover in lime pretreatment. Bioresource Technol 97:778

    Article  CAS  Google Scholar 

  • Kim TH, Lee YY (2005) Pretreatment of corn stover by soaking in aqueous ammonia. Appl Biochem Biotech 124(1–3):1119–1131

    Article  Google Scholar 

  • Kim TH, Taylor F, Hicks KB (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99(13):5694–5702

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90(1):39–47

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  PubMed  CAS  Google Scholar 

  • Kirk-Othmer (2001) encyclopedia of chemical technology, Concise, 4th edn

    Google Scholar 

  • Kleinert T, Tayenthal K (1931) Separation of cellulose and incrusting substances. Zeitschrift für Angewandte Chemie 44:788–791

    Article  CAS  Google Scholar 

  • Kohlmann KL, Sarikaya A, Westgate PJ, Weil J, Velayudhan A, Hendrickson R, Ladisch MR (1995) Enhanced enzyme activities on hydrated lignpcellulosic substrates. In: Saddler JN, Penner MH (eds) Enzymatic degradation of insoluble carbohydrates. ACS Publishing, pp 237–255

    Google Scholar 

  • Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2009) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J 46(2):126–131

    Google Scholar 

  • Lachke AH, Deshpande MV (1988) Sclerotium rolfsii: Status in cellulase research. FEMS Microbiol Lett 54(3):177–193

    Google Scholar 

  • Leatherwood JM (1965) Cellulase from Ruminococcus albus and mixed rumen microorganisms. Appl Microbiol 13(5):771–775

    PubMed  CAS  Google Scholar 

  • Lee D, Yu AHC, Wong KKY, Saddler JR (1994) Evaluation of the enzymatic susceptibility of cellulosic substrates using specific hydrolysis rates and enzyme adsorption. Appl Biochem Biotech 45/45(1):407–415

    Google Scholar 

  • Lee JW, Gwak KS, Park JY, Park MJ, Choi DH, Kwon M, Choi IG (2007) Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J Microbiol 45(6):485–491

    PubMed  CAS  Google Scholar 

  • Lee JW, Rodrigues RC, Kim HJ, Choi IG, Jeffries TW (2010) The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101:4379–4385

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  PubMed  CAS  Google Scholar 

  • Li Q, He YC, **an M, Jun G, Xu X, Yang JM, Li LZ (2009) Improving enzymatichydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresource Technol 100:3570–3575

    Google Scholar 

  • Lynd LR, Eiander RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotech 57/58(1):741–761

    Google Scholar 

  • Lynd LR, Paul JW, Willem HZ, Isak SP (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  Google Scholar 

  • Marcel GC, Leticia P, Patricia M, Robert PT (1999) Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar cane bagasse. Bioresour Technol 68(2):173–178

    Article  Google Scholar 

  • Maria RC, Marcel GC, James CL, Robert PT (1994) Mixed culture solid substrate fermentation for cellulolytic enzyme production. Biotechnology Lett 16:967–972

    Article  Google Scholar 

  • Michael JS, William SA, Michael EH, Stephen RD (2009) The impact of cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic enzymes. Cellulose 16:711–722

    Article  Google Scholar 

  • Miura S, Arimura T, Itoda N, Dwiarti L, Feng JB, Bin CH, Okabe M (2004) Production of L-Lactic acid from corncob. J Biosci Bioeng 97:153–157

    PubMed  CAS  Google Scholar 

  • Mok WSL, Antal MJ Jr (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31(4):1157

    Article  CAS  Google Scholar 

  • Mosier NS, Hendrickson R, Dreschel R, Welch G, Dien BS, Bothast R, Ladisch MR (2003a) Principles and economics of pretreating cellulose in water for ethanol production. Paper 103, BIOT Division, 225th American Chemical Society Meeting NewOrleans, 26 March 2003

    Google Scholar 

  • Mosier NS, Hendrickson R, Welch G, Dreschel R, Dien B, Ladisch MR (2003b) Corn fiber pretreatment scale-up and evaluation in an industrial corn to ethanol facility. Paper 6A-04, 25th Symposium on Biotechnology for Fuels and Chemicals, Breckenridge, CO

    Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  PubMed  CAS  Google Scholar 

  • Mustafa B, Mehmet B, Elif K, Havva B (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energ Convers Manage 50(12):3147–3157

    Article  Google Scholar 

  • Okano K, Kitagaw M, Sasaki Y, Watanabe T (2005) Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Animal Feed Sci Technol 120:235–243

    Article  Google Scholar 

  • Oso BA (1978) The production of cellulase by Talaromyces emersonii. Mycologia 70(3):577–585

    Article  CAS  Google Scholar 

  • Panagiotou G, Olsson L (2007) Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng 96(2):250–258

    Article  PubMed  CAS  Google Scholar 

  • Papatheofanous MG, Billa E, Koullas DP, Monties B, Koukios EG (1995) Two stage acid-catalyzed fractionation of lignocellulosic biomass in aqueous ethanol systems at low temperatures. Bioresour Technol 54:305–310

    Article  CAS  Google Scholar 

  • Pedersen M, Johansen KS, Meyer AS (2011) Low temperature lignocelluloses pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol Biofuels 4:11

    Article  PubMed  CAS  Google Scholar 

  • Petermann A, Tokar B (2008) GE Trees, cellulosic ethanol, and the destruction of forest biological diversity. Capitalism Nat Socialism 19(3):48–64

    Google Scholar 

  • Pimentel D (2003) Ethanol fuels: energy balance, economics, and environmental impacts are Negative. Nat Resour Res 12(2):127–34

    Google Scholar 

  • Potumarthi R, Baadhe RR, Nayak P, Jetty A (2013) One step biological retreatment of rice husk by Phanerochaete chrysosporium for the production of reducing sugars. Bioresource Technol 128:113–117

    Google Scholar 

  • Poulsen OM, Petersen LW (1988) Growth of Cellulomonas sp. ATCC 21399 on different polysaccharides as sole carbon source Induction of extracellular enzymes. Appl Microbiol Biotechnol 29(5):480–484

    Article  CAS  Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recy 50(1):1–39

    Google Scholar 

  • Purves WK, Orians GH, Heller HC (1995) Life: the science of biology, 4th edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Pye EK, Lora JH (1991) The Alcell process: a proven alternative to Kraft pul**. TAPPI J 74:113–118

    CAS  Google Scholar 

  • Rajoka MI, Malik KA (1997) Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates. Bioresour Technol 59(1):21–27

    Article  CAS  Google Scholar 

  • Ramanathan M (2003) Biochemical conversion ethanol production from root crops. In:Rantwijk van Biocatalytic transformations in ionic liquids. Trends Biotechnol 21(3):131–138

    Article  Google Scholar 

  • Raven PH, Evert RF, Susan EE (1992) Biology of plants (6th edition). W.H. Freeman and company/Worth Publishers

    Google Scholar 

  • Ravichandra P, Rama RB, Annapurna J (2012) Mixing of acid- and base-pretreated corn cobs for improved production of reducing sugars and reduction in water use during neutralization. Bioresour Technol 119:99–104

    Article  Google Scholar 

  • Reczey K, Zs. S, Eklund R, Zacchi G (1996) Cellulase production by T. reesei. Bioresour Technol 57(1):25–30

    Google Scholar 

  • Sahle DE, Hassan A, Levien KL, Kumar S, Morrell JJ (1995) Supercritical carbon dioxide treatment: effect on permeability of douglas-fir heartwood. Wood Fiber Sci 27(3):296–300

    Google Scholar 

  • Sawao M, Reiichiro S, Motoo A (1988) Cellulases of Aspergillus aculeatus. Methods Enzymol 160:274–299

    Article  Google Scholar 

  • Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64(2):139–151

    Google Scholar 

  • Shinichi K, Josie WC, Naoto K, Toshiomi Y, Hisaharu T (1986) Hydrolysis of cellulose by cellulases of Sporotrichum cellulophilum in an ultrafilter membrane reactor. Enzyme Microb Tech 8(11):691–695

    Article  Google Scholar 

  • Singh P, Suman A, Tiwari P, Arya N, Gaur A, Shrivastava AK (2008) Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J Microbiol Biotechnol 24:667–673

    Article  CAS  Google Scholar 

  • Solomon TWG (1988) Organic chemistry, 4th edn. Wiley

    Google Scholar 

  • Steiner W, Lafferty RM, Gomes I, Esterbauer H (1987) Studies on a wild strain of Schizophyllum commune: cellulase and xylanase production and formation of the extracellular polysaccharide Schizophyllan. Biotechnol Bioeng 30(2):169–178

    Article  PubMed  CAS  Google Scholar 

  • Stenberg K, Tengborg C, Mats G, Guido Z (1998) Optimisation of steam pretreatment of SO2-impregnated mixed softwoods for ethanol production. J Chem Technol Biot 71(4):299–308

    Article  CAS  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases: production, applications and challenges. J Sci Ind Res India 64:832–844

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Tatsuya F, Xu F, Hiroyuki I, Katsuji M, Shigeki S (2009) Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels 2:24

    Article  Google Scholar 

  • Teymouri F, Laureano PL, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96(18):2014–2018

    Article  PubMed  CAS  Google Scholar 

  • Thomas WJ, Suki C, Kent KT (1981) Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Environ Microb 42(2):290–296

    Google Scholar 

  • Thomas KN, Zeikus JG (1981) Comparison of extracellular cellulase activities of Clostridium thermocellum LQRI and Trichoderma reesei QM9414. Appl Environ Microbiol 42(2):231–240

    Google Scholar 

  • Torrea P, Aliakbariana B, Rivas B, Dominguezb JM, Converti AA (2008) Release of ferulic acid from corn cobs by alkaline hydrolysis. Biochem Eng J 40:500–506

    Article  Google Scholar 

  • Vanden WA, Covert S, Cullen D (1993) Identification of the gene encoding the major cellobiohydrolase of the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 59:3492–3494

    Google Scholar 

  • Van Wyk JPH (1999) Saccharification of paper products by cellulase from Penicillium funiculosum and Trichoderma reesei. Biomass Bioenergy 16(3):239–242

    Article  Google Scholar 

  • Viola E, Zimabardi F, Cardinale M, Cardinale G, Braccio G, Gamabacorta E (2008) Processing cereal straws by steam explosion in a pilot plant to enhance digestibility in ruminants. Bioresour Technol 99:681–689

    Article  PubMed  CAS  Google Scholar 

  • Waldner R, Leisola MSA, Fiechter A (1988) Comparison of ligninolytic activities of selected fungi. Appl Microbiol Biotechnol 29:400–407

    Article  CAS  Google Scholar 

  • Wichern F, Miiller T, Joergensen RG, Buerkert A (2004) Effect of manure quality and application forms on soil C and N turnover of a subtropical oasis soil under laboratory conditions. Biol Fertil Soils 39:165–171

    Article  Google Scholar 

  • Wood TM, McCrae SI (1978) The cellulase of Trichoderma koningii. Purification and properties of some endoglucanase components with special reference to their action on cellulose when acting alone and in synergism with the cellobiohydrolase. Biochem J 171(1):61–72

    PubMed  CAS  Google Scholar 

  • Wood TM (1971) The cellulase of Fusarium solani. Purification and specificity of the β-(1 → 4)-glucanase and the β-d-glucosidase components. Biochem J 121(3):353–362

    PubMed  CAS  Google Scholar 

  • Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827

    Article  PubMed  CAS  Google Scholar 

  • Zimbardi F, Viola E, Nanna F, Larocca E, Cardinale M, Barisano D (2007) Acid impregnation and steam explosion of corn stover in batch processes. Ind Crop Prod 26(2):195–206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravichandra Potumarthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Potumarthi, R., Baadhe, R.R., Bhattacharya, S. (2013). Fermentable Sugars from Lignocellulosic Biomass: Technical Challenges. In: Gupta, V., Tuohy, M. (eds) Biofuel Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34519-7_1

Download citation

Publish with us

Policies and ethics

Navigation