Deformable Shape Retrieval by Learning Diffusion Kernels

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Abstract

In classical signal processing, it is common to analyze and process signals in the frequency domain, by representing the signal in the Fourier basis, and filtering it by applying a transfer function on the Fourier coefficients. In some applications, it is possible to design an optimal filter. A classical example is the Wiener filter that achieves a minimum mean squared error estimate for signal denoising. Here, we adopt similar concepts to construct optimal diffusion geometric shape descriptors. The analogy of Fourier basis are the eigenfunctions of the Laplace-Beltrami operator, in which many geometric constructions such as diffusion metrics, can be represented. By designing a filter of the Laplace-Beltrami eigenvalues, it is theoretically possible to achieve invariance to different shape transformations, like scaling. Given a set of shape classes with different transformations, we learn the optimal filter by minimizing the ratio between knowingly similar and knowingly dissimilar diffusion distances it induces. The output of the proposed framework is a filter that is optimally tuned to handle transformations that characterize the training set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bérard, P., Besson, G., Gallot, S.: Embedding riemannian manifolds by their heat kernel. Geometric and Functional Analysis 4(4), 373–398 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bronstein, A.M., Bronstein, M.M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L.J., Sipiran, I., Kokkinos, I., Murino, V., Ovsjanikov, M., Patané, G., Spagnuolo, M., Sun, J.: SHREC 2010: robust feature detection and description benchmark. In: Proc. 3DOR (2010)

    Google Scholar 

  3. Bronstein, A.M., Bronstein, M.M., Castellani, U., Falcidieno, B., Fusiello, A., Godil, A., Guibas, L.J., Kokkinos, I., Lian, Z., Ovsjanikov, M., Patané, G., Spagnuolo, M., Toldo, R.: Shrec 2010: robust large-scale shape retrieval benchmark. In: Proc. 3DOR (2010)

    Google Scholar 

  4. Bronstein, A.M., Bronstein, M.M., Ovsjanikov, M., Guibas, L.J.: Shape google: a computer vision approach to invariant shape retrieval. In: Proc. NORDIA (2009)

    Google Scholar 

  5. Bronstein, M.M., Bronstein, A.M.: Shape recognition with spectral distances. Trans. PAMI (2010) (to appear)

    Google Scholar 

  6. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: Proc. CVPR (2010)

    Google Scholar 

  7. Coifman, R.R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic Analysis 21, 5–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, vol. 1 (2005)

    Google Scholar 

  9. Lévy, B.: Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In: Proc. Shape Modeling and Applications (2006)

    Google Scholar 

  10. Mahmoudi, M., Sapiro, G.: Three-dimensional point cloud recognition via distributions of geometric distances. Graphical Models 71(1), 22–31 (2009)

    Article  Google Scholar 

  11. Mateus, D., Horaud, R.P., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using laplacian eigenfunctions and unsupervised point registration. In: Proc. CVPR (June 2008)

    Google Scholar 

  12. Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III, pp. 35–57 (2003)

    Google Scholar 

  13. Ovsjanikov, M., Sun, J., Guibas, L.J.: Global intrinsic symmetries of shapes. Computer Graphics Forum 27, 1341–1348 (2008)

    Article  Google Scholar 

  14. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2(1), 15–36 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Reuter, M., Wolter, F.-E., Peinecke N.: Laplace-spectra as fingerprints for shape matching. In: Proc. ACM Symp. Solid and Physical Modeling, pp. 101–106 (2005)

    Google Scholar 

  16. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proc. SGP, pp. 225–233 (2007)

    Google Scholar 

  17. Spira, A., Sochen, N., Kimmel, R.: Geometric filters, diffusion flows, and kernels in image processing. In: Handbook of Computational Geometry for Pattern Recognition, Computer Vision, Neurocomputing and Robotics. Springer, Heidelberg (2005)

    Google Scholar 

  18. Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proc. SGP (2009)

    Google Scholar 

  19. Wardetzky, M., Mathur, S., Kälberer, F., Grinspun, E.: Discrete Laplace operators: no free lunch. In: Conf. Computer Graphics and Interactive Techniques (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aflalo, Y., Bronstein, A.M., Bronstein, M.M., Kimmel, R. (2012). Deformable Shape Retrieval by Learning Diffusion Kernels. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation