A Correspondence-Less Approach to Matching of Deformable Shapes

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Abstract

Finding a match between partially available deformable shapes is a challenging problem with numerous applications. The problem is usually approached by computing local descriptors on a pair of shapes and then establishing a point-wise correspondence between the two. In this paper, we introduce an alternative correspondence-less approach to matching fragments to an entire shape undergoing a non-rigid deformation. We use diffusion geometric descriptors and optimize over the integration domains on which the integral descriptors of the two parts match. The problem is regularized using the Mumford-Shah functional. We show an efficient discretization based on the Ambrosio-Tortorelli approximation generalized to triangular meshes. Experiments demonstrating the success of the proposed method are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via-convergence. Comm. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bronstein, A.M., Bronstein, M.: Not only size matters: regularized partial matching of nonrigid shapes. In: Prof. NORDIA (2008)

    Google Scholar 

  3. Bronstein, A.M., Bronstein, M.M.: Regularized partial matching of rigid shapes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 143–154. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Partial similarity of objects, or how to compare a centaur to a horse. IJCV 84(2), 163–183 (2009)

    Article  Google Scholar 

  5. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. National Academy of Science (PNAS) 103(5), 1168–1172 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical geometry of non-rigid shapes. Springer-Verlag New York Inc., Secaucus (2008)

    MATH  Google Scholar 

  7. Bronstein, A.M., Bronstein, M.M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L.J., Kokkinos, I., Murino, V., Ovsjanikov, M., et al.: SHREC 2010: robust feature detection and description benchmark. In: Proc. 3DOR (2010)

    Google Scholar 

  8. Bronstein, A.M., Bronstein, M.M., Castellani, U., Dubrovina, A., Guibas, L.J., Horaud, R.P., Kimmel, R., Knossow, D., von Lavante, E., Mateus, D., et al.: SHREC 2010: robust correspondence benchmark. In: Eurographics Workshop on 3D Object Retrieval (2010)

    Google Scholar 

  9. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: Proc. CVPR (2010)

    Google Scholar 

  10. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  11. Clarenz, U., Rumpf, M., Telea, A.: Robust feature detection and local classification for surfaces based on moment analysis. Trans. Visualization and Computer Graphics 10(5), 516–524 (2004)

    Article  Google Scholar 

  12. Domokos, C., Kato, Z.: Affine puzzle: Realigning deformed object fragments without correspondences. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 777–790. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, vol. 1 (2005)

    Google Scholar 

  14. Gromov, M.: Structures Métriques Pour les Variétés Riemanniennes. Textes Mathématiques, vol. (1) (1981)

    Google Scholar 

  15. Jacobs, D., Weinshall, D., Gdalyahu, Y.: Class representation and image retrieval with non-metric distances. Trans. PAMI 22(6), 583–600 (2000)

    Article  Google Scholar 

  16. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. Trans. PAMI 21(5), 433–449 (1999)

    Article  Google Scholar 

  17. Lévy, B.: Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In: Proc. Shape Modeling and Applications (2006)

    Google Scholar 

  18. Manay, S., Hong, B.W., Yezzi, A.J., Soatto, S.: Integral invariant signatures. LNCS, pp. 87–99 (2004)

    Google Scholar 

  19. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5, 313–346 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Visualization and Mathematics III, 35–57 (2003)

    Google Scholar 

  21. Mitra, N.J., Guibas, L.J., Giesen, J., Pauly, M.: Probabilistic fingerprints for shapes. In: Proc. SGP (2006)

    Google Scholar 

  22. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Communications on pure and applied mathematics 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ovsjanikov, M., Bronstein, A.M., Guibas, L.J., Bronstein, M.M.: Shape Google: a computer vision approach to invariant shape retrieval. In: Proc. NORDIA, Citeseer (2009)

    Google Scholar 

  24. Pauly, M., Keiser, R., Gross, M.: Multi-scale feature extraction on point-sampled surfaces. In: Computer Graphics Forum, vol. 22, pp. 281–289 (2003)

    Google Scholar 

  25. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2(1), 15–36 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace-spectra as fingerprints for shape matching. In: Proc. ACM Symp. Solid and Physical Modeling, pp. 101–106 (2005)

    Google Scholar 

  27. Sipiran, I., Bustos, B.: A robust 3D interest points detector based on Harris operator. In: Proc. 3DOR, pp. 7–14. Eurographics (2010)

    Google Scholar 

  28. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: Proc. CVPR (2003)

    Google Scholar 

  29. Sun, J., Ovsjanikov, M., Guibas, L.: A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. In: Computer Graphics Forum, vol. 28, pp. 1383–1392 (2009)

    Google Scholar 

  30. Toldo, R., Castellani, U., Fusiello, A.: Visual vocabulary signature for 3D object retrieval and partial matching. In: Proc. 3DOR (2009)

    Google Scholar 

  31. Wardetzky, M., Mathur, S., Kälberer, F., Grinspun, E.: Discrete Laplace operators: no free lunch. In: Conf. Computer Graphics and Interactive Techniques (2008)

    Google Scholar 

  32. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: Proc. CVPR (2009)

    Google Scholar 

  33. Zhang, C., Chen, T.: Efficient feature extraction for 2D/3D objects in mesh representation. In: Proc. ICIP, vol. 3 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pokrass, J., Bronstein, A.M., Bronstein, M.M. (2012). A Correspondence-Less Approach to Matching of Deformable Shapes. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation