New Modeling Approach to Describe and Predict Carbon Sequestration Dynamics in Agricultural Soils

  • Chapter
  • First Online:
Carbon Sequestration in Agricultural Soils

Abstract

The contribution of agro-ecosystems to carbon sequestration in the form of soil organic matter (SOM) is increasingly considered as a mitigating factor for climate change. The ecosystem carbon storage depends on the balance between C inputs and outflows due to SOM breakdown. SOM decomposition has been reported as mostly affected by temperature and water availability, at global and regional scale, and by C quality at local scale, where climate can be considered relatively uniform. In this work, a new model of SOM decomposition is presented. The SOMDY model is based on an advanced description of SOM chemical quality by 13C-CPMAS NMR instead of traditional C/N ratio. The model includes also the effects of physical aggregation of organic matter. SOMDY was calibrated on CO2 emission data from extensive field experimental measurements. The simulation results showed the model capability to predict SOM changes during decomposition processes, including the effects of addition of organic amendments (e.g., compost applications, crop residual burial), as well as the impact of different tillage practices on the physical structure of soil aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adair EC, Parton WJ, Del Grosso SJ, Silver WL, Harmon ME, Hall SA, Burke IC, Hart SC (2008) Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob Chang Biol 14:2636–2660

    Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Ågren GI, Bosatta E (1996) Theoretical ecosystem ecology – understanding element cycles. Cambridge University Press, Cambridge

    Google Scholar 

  • Allen SE (1989) Chemical analysis of ecological materials. Blackwell, Oxford

    Google Scholar 

  • Almendros G, Dorado J, González-Vila FJ, Blanco MJ, Lankes U (2000) 13C NMR assessment of decomposition patterns during composting of forest shrub biomass. Soil Biol Biochem 32:793–804

    Article  CAS  Google Scholar 

  • Baker JM, Ochsner TE, Venterea RT, Griffis TJ (2007) Tillage and soil carbon sequestration – what do we really know? Agric Ecosyst Environ 118:1–5

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation and carbon sequestration, 2nd edn. Springer, Berlin

    Google Scholar 

  • Bonanomi G, Incerti G, Antignani V, Capodilupo M, Mazzoleni S (2010) Decomposition and nutrient dynamics in mixed litter of Mediterranean species. Plant Soil 331:481–496

    Article  CAS  Google Scholar 

  • Bonanomi G, D’Ascoli R, Antignani V, Capodilupo M, Cozzolino L, Marzaioli R, Puopolo G, Rutigliano FA, Scelza R, Scotti R, Rao MA, Zoina A (2011a) Assessing soil quality under intensive cultivation and tree orchards in Southern Italy. Appl Soil Ecol 47:184–194

    Article  Google Scholar 

  • Bonanomi G, Incerti G, Barile E, Capodilupo M, Antignani V, Mingo A, Lanzotti V, Scala F, Mazzoleni S (2011b) Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectroscopy. New Phytol. 191:1018–1030

    Google Scholar 

  • Burke IC, Kaye JP, Bird SP, Hall SA, McCulley RL, Sommerville GL (2003) Evaluating and testing models of terrestrial biogeochemistry: the role of temperature in controlling decomposition. In: Canham CD, Lauenroth WK (eds) Models in ecosystem science. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Coleman K, Jenkinson DS (1996) RothC-26.3 – a model for the turnover of carbon in soil. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models, using existing long-term datasets. Springer, Heidelberg, pp 237–246

    Chapter  Google Scholar 

  • Conant RT, Easter M, Paustian K, Swan A, Williams S (2007) Impacts of periodic tillage on soil C stocks: a synthesis. Soil Till Res 95:1–10

    Article  Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR, Holland EA, Pendall E, Schimel DS, Ojima DS (2005) Modeling soil CO2 emissions from ecosystems. Biogeochemistry 432 73:71–91

    Article  Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR, Hartman MD, Brenner J, Ojima DS, Schimel DS (2001) Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model. In: Schaffer LMa, Hansen S (eds) Modeling carbon and nitrogen dynamics for soil management. CRC, Boca Raton, FL, pp 303–332

    Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based crop** systems have reduced carbon and nitrogen losses. Nature 396:262–265

    Article  CAS  Google Scholar 

  • Franko U, Oelschlägel B, Schenk S (1995) Simulation of temperature, and nitrogen dynamics using the model CANDY. Ecol Model 81:213–222

    Article  CAS  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765

    Article  Google Scholar 

  • Gillon D, Joffre R, Ibrahima A (1999) Can litter decomposability be predicted by near infrared reflectance spectroscopy? Ecology 80:175–186

    Article  Google Scholar 

  • Hoff C, Rambal S, Joffre R (2002) Simulating carbon and water flows and growth in a Mediterranean evergreen Quercus ilex coppice using the FOREST-BGC model. For Ecol Manag 164:121–136

    Article  Google Scholar 

  • Huang Y, Stankiewicz BA, Eglinton G, Snape CE, Evans B, Latter PM, Ineson P (1998) Monitoring biomacromolecular degradation of Calluna vulgaris in a 23 year field experiment using solid state 13C-NMR and pyrolysis-GC/MS. Soil Biol Biochem 30:1517–1528

    Article  CAS  Google Scholar 

  • Hunt HW (1977) A simulation model for decomposition in grasslands. Ecology 58:469–484

    Article  CAS  Google Scholar 

  • Hunt ER, Piper SC, Nemani R, Keeling CD, Otto RD, Running SW (1996) Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model. Glob Biogeochem Cycles 10:431–456

    Article  CAS  Google Scholar 

  • Incerti G, Bonanomi G, Giannino F, Rutigliano FA, Piermatteo D, Castaldi S, De Marco A, Fierro A, Fioretto A, Maggi O, Papa S, Persiani AM, Feoli E, De Santo AV, Mazzoleni S (2011) Litter decomposition in Mediterranean ecosystems: Modelling the controlling role of climatic conditions and litter quality. Appl Soil Ecol 49:148–157

    Google Scholar 

  • Jenkinson DS, Rayner JH (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci 123:298–305

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic carbon storage. Soil Biol Biochem 27:753–760

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Kuzyako Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–386

    Article  Google Scholar 

  • Li C et al (2003) Modeling soil organic carbon change in croplands of China. Ecol Appl 13(2):327–336

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Lorenz K, Preston CM, Raspe S, Morrison IK, Feger KH (2000) Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMR. Soil Biol Biochem 32:779–792

    Article  CAS  Google Scholar 

  • Mathers NJ, Jalota RK, Dalal RC, Boyd SE (2007) 13C-NMR analysis of decomposing litter and fine roots in the semi-arid Mulga Lands of southern Queensland. Soil Biol Biochem 39:993–1006

    Article  CAS  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Minderman G (1968) Addition, decomposition and accumulation of organic matter in forests. J Ecol 56:355–362

    Article  Google Scholar 

  • Muetzelfeldt R, Massheder J (2003) The Simile visual modelling environment. Eur J Agron 18:345–358

    Article  Google Scholar 

  • Pane C, Spaccini R, Piccolo A, Scala F, Bonanomi G (2011) Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biol Control 56:115–124

    Article  Google Scholar 

  • Parton WJ, Schimel D, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Parton WJ, Stewart JWB, Cole CV (1988) Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5:109–131

    Article  CAS  Google Scholar 

  • Parton WJ, Ojima DS, Cole CV, Schimel DS (1994) A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture, and management. Quantitative modelling of soil forming processes, SSSA Special Publication 39, Madison WI, pp 147–167

    Google Scholar 

  • Piccolo A (1996) Humus and soil conservation. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam

    Google Scholar 

  • Piccolo A, Campanella L, Petronio BM (1990) 13C-NMR spectra of humic substances extracted with different mechanisms. Soil Sci Soc Am J 54:750–755

    Article  CAS  Google Scholar 

  • Post WM, Izarurralde RC, Jastrow JD, McCarl BA, Amonette JE, Bailey VL, Jardien PM, West TO, Zhou J (2004) Enhancement of carbon sequestration in U.S. Soils. BioScience 54:895–908

    Article  Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob Biogeochem Cycles 7(4):811–841

    Article  Google Scholar 

  • Preston CM, Nault JR, Trofymow JA (2009) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of “lignin”. Ecosystems 12:1078–1102

    Article  CAS  Google Scholar 

  • Reicosky DC (2003) Tillage-induced CO2 emissions and carbon sequestration: effect of secondary tillage and compaction. In: Garcia-Torres L, Benites J, Martinez-Vilela A, Holgado-Cabrera A (eds) Conservation agriculture. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Rodrigo A, Recous S, Neel C, Mary B (1997) Modelling temperature and moisture effects on C-N transformations in soils: comparison of nine models. Ecol Model 102:325–339

    Article  CAS  Google Scholar 

  • Rovira P, Vallejo VR (2007) Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biol Biochem 39:202–213

    Article  CAS  Google Scholar 

  • Rowland AP, Roberts JD (1994) Lignin and cellulose fraction in decomposition studies using acid-detergent fibre methods. Commun Soil Sci Plant Anal 25:269–277

    Article  CAS  Google Scholar 

  • Running SW, Gower ST (1991) Forest-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol 9:147–160

    CAS  Google Scholar 

  • Shibu ME, Leffelaar PA, Van Keulen H, Aggarwal PK (2006) Quantitative description of soil organic matter dynamics – a review of approaches with reference to rice-based crop** systems. Geoderma 137:1–18

    Article  CAS  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:161–185

    Article  Google Scholar 

  • Smejkalova D, Spaccini R, Piccolo A (2008) Multivariate analysis of CPMAS 13C-NMR spectra of soils and humic matter as a tool to evaluate organic carbon quality in natural systems. Eur J Soil Sci 59:496–504

    Article  CAS  Google Scholar 

  • Spaccini R, Piccolo A, Haberhauer G, Gerzabek MH (2000) Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by 13C distribution and CPMAS-NMR spectra. Eur J Soil Sci 51:583–594

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Studies in ecology 5. Blackwell, Oxford

    Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Mazzoleni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mazzoleni, S. et al. (2012). New Modeling Approach to Describe and Predict Carbon Sequestration Dynamics in Agricultural Soils. In: Piccolo, A. (eds) Carbon Sequestration in Agricultural Soils. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23385-2_11

Download citation

Publish with us

Policies and ethics

Navigation