Geometry of Dual Pairs of Complex Supercurves

  • Chapter
  • First Online:
Supersymmetry in Mathematics and Physics

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2027))

  • 2105 Accesses

Abstract

Supercurves are a generalization to supergeometry of Riemann surfaces or algebraic curves. I review the definitions, examples, key results, and open problems in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.A. Baranov, A.S. Schwarz, Multiloop contribution to string theory. JETP Lett. 42, 419–421 (1985)

    MathSciNet  Google Scholar 

  2. M.J. Bergvelt, J.M. Rabin, Supercurves, their Jacobians, and super KP equations. Duke Math. J. 98(1), 1–57 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Crane, J.M. Rabin, Super Riemann surfaces: Uniformization and Teichmueller theory. Commun. Math. Phys. 113, 601–623 (1988)

    Article  MathSciNet  Google Scholar 

  4. P. Deligne, J. Morgan, in Notes on Supersymmetry (Following Joseph Bernstein), ed. by P. Deligne et al. Quantum Fields and Strings, A Course For Mathematicians, vol. I (American Mathematical Society, RI, 1999), pp. 41–97

    Google Scholar 

  5. E. D’Hoker, D.H. Phong, The geometry of string perturbation theory. Rev. Mod. Phys. 60, 917–1065 (1988)

    Article  MathSciNet  Google Scholar 

  6. J. Dieudonné, Remarks on quasi-Frobenius rings. Ill. J. Math. 2, 346–354 (1958)

    MATH  Google Scholar 

  7. S.N. Dolgikh, A.A. Rosly, A.S. Schwarz, Supermoduli spaces. Commun. Math. Phys. 135, 91–100 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Friedan, in Notes on String Theory and Two-Dimensional Conformal Field Theory. Workshop on Unified String Theories (World Scientific, Singapore, 1986), pp. 162–213

    Google Scholar 

  9. S.B. Giddings, P. Nelson, Line bundles on super Riemann surfaces. Commun. Math. Phys. 118, 289–302 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Griffiths, J. Harris, Principles of Algebraic Geometry (Wiley, New York, 1978)

    MATH  Google Scholar 

  11. C. Haske, R.O. Wells Jr., Serre duality on complex supermanifolds. Duke Math. J. 54, 493–500 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. LeBrun, M. Rothstein, Moduli of super Riemann surfaces. Commun. Math. Phys. 117, 159–176 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. A.M. Levin, Supersymmetric elliptic curves. Funct. Anal. Appl. 21, 243–244 (1987)

    MATH  Google Scholar 

  14. Y.I. Manin, in Gauge Field Theory and Complex Geometry. Grundlehren Math. Wiss., vol. 289 (Springer, Berlin, 1988)

    Google Scholar 

  15. Y.I. Manin, Topics in Noncommutative Geometry (Princeton University Press, NJ, 1991), p. 47

    MATH  Google Scholar 

  16. O.V. Ogievetsky, I.B. Penkov, Serre duality for projective supermanifolds. Funct. Anal. Appl. 18, 78–79 (1984)

    Article  Google Scholar 

  17. F. Ongay, J.M. Rabin, On decomposing N = 2 line bundles as tensor products of N = 1 line bundles. Lett. Math. Phys. 61, 101–106 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. J.M. Rabin, Super elliptic curves. J. Geom. Phys. 15, 252–280 (1995)

    MathSciNet  MATH  Google Scholar 

  19. J.M. Rabin, M.J. Rothstein, D-modules on 1 | 1 supercurves. J. Geom. Phys. 60, 626–636 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. A.A. Rosly, A.S. Schwarz, A.A. Voronov, Geometry of superconformal manifolds. Commun. Math. Phys. 119, 129–152 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. Tsuchimoto, On super theta functions. J. Math. Kyoto Univ. 34(3), 641–694 (1994)

    MathSciNet  MATH  Google Scholar 

  22. A.Yu. Vaintrob, Deformations of complex superspaces and coherent sheaves on them. J. Soviet Math. 51, 2140–2188 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

My thanks to those who have worked with me on the subject of supercurves over the years, notably Maarten Bergvelt, Louis Crane, Fausto Ongay, and Mitchell Rothstein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Rabin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rabin, J.M. (2011). Geometry of Dual Pairs of Complex Supercurves. In: Ferrara, S., Fioresi, R., Varadarajan, V. (eds) Supersymmetry in Mathematics and Physics. Lecture Notes in Mathematics(), vol 2027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21744-9_11

Download citation

Publish with us

Policies and ethics

Navigation