Atomic Transition Frequencies, Isotope Shifts, and Sensitivity to Variation of the Fine Structure Constant for Studies of Quasar Absorption Spectra

  • Conference paper
  • First Online:
From Varying Couplings to Fundamental Physics

Abstract

Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental “constants” in the Universe. A change in the fine structure constant, \(\alpha = {e}^{2}/\hslash c\), could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that α varies spatially (61). That is, in one direction on the sky α seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger.

To continue this study we need accurate laboratory measurements of atomic transition frequencies. The aim of this paper is to provide a compilation of transitions of importance to the search for α variation. They are E1 transitions to the ground state in several different atoms and ions, with wavelengths ranging from around 900–6000 Å, and require an accuracy of better than 10 − 4 Å. We discuss isotope shift measurements that are needed in order to resolve systematic effects in the study. The coefficients of sensitivity to α-variation (q) are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Aldenius et al., MNRAS 370 (2006) 444.

    Article  ADS  Google Scholar 

  2. T.P. Ashenfelter, G.J. Mathews and K.A. Olive, Phys. Rev. Lett. 92 (2004) 041102.

    Article  ADS  Google Scholar 

  3. V. Batteiger et al., Phys. Rev. A80 (2009) 022503.

    ADS  Google Scholar 

  4. J.C. Berengut et al., Phys. Rev. A68 (2003) 022502.

    ADS  Google Scholar 

  5. J.C. Berengut et al., Phys. Rev. A70 (2004) 064101.

    ADS  Google Scholar 

  6. J.C. Berengut et al., Phys. Rev. A72 (2005) 044501.

    ADS  Google Scholar 

  7. J.C. Berengut et al., Phys. Rev. A73 (2006) 012504.

    ADS  Google Scholar 

  8. J.C. Berengut et al., J. Phys. B 41 (2008) 235702.

    Article  ADS  Google Scholar 

  9. J.C. Berengut and V.V. Flambaum, ar**v:1009.3693.

    Google Scholar 

  10. R.J. Blackwell-Whitehead et al., MNRAS 364 (2005) 705.

    ADS  Google Scholar 

  11. S.L. Boiteux et al., J. Phys. (France) 49 (1988) 885.

    Article  Google Scholar 

  12. H. Chand et al., A&A 417 (2004) 853.

    Article  ADS  Google Scholar 

  13. R.E. Drullinger et al., Appl. Phys. 22 (1980) 365.

    Article  ADS  Google Scholar 

  14. V.A. Dzuba et al., Phys. Rev. A54 (1996) 3948.

    ADS  Google Scholar 

  15. V.A. Dzuba and V.V. Flambaum, Phys. Rev. A71 (2005) 052509.

    ADS  Google Scholar 

  16. V.A. Dzuba and W.R. Johnson, Phys. Rev. A76 (2007) 062510.

    ADS  Google Scholar 

  17. V.A. Dzuba et al., Phys. Rev. Lett. 82 (1999) 888.

    Article  ADS  Google Scholar 

  18. V.A. Dzuba et al., Phys. Rev. A59 (1999) 230.

    ADS  Google Scholar 

  19. V.A. Dzuba et al., Phys. Rev. A66 (2002) 022501.

    ADS  Google Scholar 

  20. Y. Fenner et al., MNRAS 358 (2005) 468.

    Article  ADS  Google Scholar 

  21. V.V. Flambaum and J.C. Berengut, Int. J. Mod. Phys. A 24 (2009) 3342.

    Article  ADS  MATH  Google Scholar 

  22. Y.P. Gangrsky et al., Eur. Phys. J. A 3 (1998) 313.

    Article  ADS  Google Scholar 

  23. U. Griesmann and R. Kling, ApJ 536 (2000) L113.

    Article  ADS  Google Scholar 

  24. L. Hallstadius, Z. Phys. A 291 (1979) 203.

    Article  ADS  Google Scholar 

  25. S. Hannemann et Phys. Rev. A74 (2006) 012505.

    Google Scholar 

  26. G. Huber et al., Phys. Rev. C18 (2382) 2342.

    Google Scholar 

  27. T.I. Ivanov et al., MNRAS 389 (2008) L4.

    ADS  Google Scholar 

  28. P. Juncar et al., Metrologia 17 (1981) 77.

    Article  ADS  Google Scholar 

  29. M.G. Kozlov et al., Phys. Rev. A70 (2004) 062108.

    ADS  Google Scholar 

  30. I. Labazan et al., Phys. Rev. A71 (2005) 040501.

    ADS  Google Scholar 

  31. S.A. Levshakov et al., A&A 434 (2005) 827.

    Article  ADS  Google Scholar 

  32. S.A. Levshakov et al., A&A 449 (2006) 879.

    Article  ADS  Google Scholar 

  33. S.A. Levshakov et al., A&A 466 (2007) 1077.

    Article  ADS  Google Scholar 

  34. K. Matsubara et al., Appl. Phys. B 76 (2003) 209.

    Article  ADS  Google Scholar 

  35. D.C. Morton, Astrophys. J. Suppl. Ser. 77 (1991) 119.

    Article  ADS  Google Scholar 

  36. D.C. Morton, Astrophys. J. Suppl. Ser. 149 (2003) 205.

    Article  ADS  Google Scholar 

  37. M.T. Murphy et al., MNRAS 327 (2001) 1208.

    Article  ADS  Google Scholar 

  38. M.T. Murphy et al., MNRAS 327 (2001) 1223.

    Article  ADS  Google Scholar 

  39. M.T. Murphy et al., MNRAS 327 (2001) 1237.

    Article  ADS  Google Scholar 

  40. M.T. Murphy et al., MNRAS 345 (2003) 609.

    Article  ADS  Google Scholar 

  41. M.T. Murphy et al., Astrophys. Space Sci. 283 (2003) 577.

    Article  ADS  Google Scholar 

  42. M.T. Murphy et al., Lect. Notes Phys. 648 (2004) 131.

    Article  ADS  Google Scholar 

  43. M.T. Murphy et al., Phys. Rev. Lett. 99 (2007) 239001.

    Article  ADS  Google Scholar 

  44. M.T. Murphy et al., MNRAS 384 (2008) 1053.

    Article  ADS  Google Scholar 

  45. G. Nave et al., J. Opt. Soc. Am. B 8 (1991) 2028.

    Article  ADS  Google Scholar 

  46. K. Pescht et al., Z. Phys. A 281 (1977) 199.

    Article  ADS  Google Scholar 

  47. J.C. Pickering et al., MNRAS 300 (1998) 131.

    Article  ADS  Google Scholar 

  48. J.C. Pickering et al., MNRAS 319 (2000) 163.

    Article  ADS  Google Scholar 

  49. J.C. Pickering et al., A&A 396 (2002) 715.

    Article  ADS  Google Scholar 

  50. S.G. Porsev et al., Phys Rev. A76 (2007) 052507.

    ADS  Google Scholar 

  51. R. Quast et al., A&A 415 (2004) L7.

    Article  ADS  Google Scholar 

  52. E.J. Salumbides et al., MNRAS 373 (2006) L41.

    ADS  Google Scholar 

  53. M.P. Savedoff, Nature 178 (1956) 689.

    Article  ADS  Google Scholar 

  54. I.M. Savukov and V.A. Dzuba, Phys. Rev A77 (2008) 042501.

    ADS  Google Scholar 

  55. R. Srianand et al., Phys. Rev. Lett. 92 (2004) 121302.

    Article  ADS  Google Scholar 

  56. R. Srianand et al., Phys. Rev. Lett. 99 (2007) 239002.

    Article  ADS  Google Scholar 

  57. J.-P. Uzan, Rev. Mod. Phys. 75 (2003) 403.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. J.K. Webb et al., Phys. Rev. Lett. 82 (1999) 884.

    Article  ADS  Google Scholar 

  59. J.K. Webb et al., Phys. Rev. Lett. 87 (2001) 091301.

    Article  ADS  Google Scholar 

  60. J.K. Webb et al., Astrophys. Space Sci. 283 (2003) 565.

    Article  ADS  Google Scholar 

  61. J.K. Webb et al., ar**v:1008.3907.

    Google Scholar 

  62. A.L. Wolf et al., Phys. Rev. A78 (2008) 032511.

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank D. Morton and W. Ubachs for useful comments and for pointing out some errors.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berengut, J.C. et al. (2011). Atomic Transition Frequencies, Isotope Shifts, and Sensitivity to Variation of the Fine Structure Constant for Studies of Quasar Absorption Spectra. In: Martins, C., Molaro, P. (eds) From Varying Couplings to Fundamental Physics. Astrophysics and Space Science Proceedings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19397-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19397-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19396-5

  • Online ISBN: 978-3-642-19397-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation