Multi-robot Teams for Environmental Monitoring

  • Chapter
Innovations in Defence Support Systems – 3

Abstract

In this chapter we target the problem of monitoring an environment with a team of mobile robots having on board video-cameras and fixed stereo cameras available within the environment. Current research regards homogeneous robots, whereas in this chapter we study highly heterogeneous systems and consider the problem of patrolling an area with a dynamic set of agents. The system presented in the chapter provides enhanced multi-robot coordination and vision-based activity monitoring techniques. The main objective is the integration and development of coordination techniques for multi-robot environment coverage, with the goal of maximizing the quality of information gathered from a given area thus, implementing a Heterogeneous mobile and reconfigurable multi-camera video-surveillance system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agmon, N.: Multi-robot patrolling and other multi-robot cooperative tasks: An algorithmic approach. Ph.D. thesis, BarIlan University (2009)

    Google Scholar 

  2. Agmon, N., Kraus, S., Kaminka, G.: Multi-robot perimeter patrol in adversarial settings. In: Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2339–2345 (2008)

    Google Scholar 

  3. Alami, R., Fleury, S., Herrb, M., Ingrand, F., Robert, F.: Multi robot cooperation in the martha project. IEEE Robotics and Automation Magazine 5(1), 36–47 (1998)

    Article  Google Scholar 

  4. Almeida, A., Ramalho, G., Santana, H., Tedesco, P.A., Menezes, T., Corruble, V., Chevaleyre, Y.: Recent advances on multi-agent patrolling. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 474–483. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Bahadori, S., Iocchi, L., Leone, G.R., Nardi, D., Scozzafava, L.: Real-time people localization and tracking through fixed stereo vision. Applied Intelligence 26, 83–97 (2007)

    Article  Google Scholar 

  6. Basilico, N., Gatti, N., Rossi, T., Ceppi, S., Amigoni, F.: Extending algorithms for mobile robot patrolling in the presence of adversaries to more realistic settings. In: WI-IAT 2009: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, pp. 557–564. IEEE Computer Society Press, Washington (2009)

    Chapter  Google Scholar 

  7. Baumberg, A., Hogg, D.C.: Learning deformable models for tracking the human body. In: Shah, M., Jain, R. (eds.) Motion-Based Recognition, pp. 39–60 (1996)

    Google Scholar 

  8. Brand, M., Oliver, N., Pentland, A.: Coupled hidden markov models for complex action recognition. In: CVPR ’97: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR 1997), p. 994. IEEE Computer Society Press, Washington (1997)

    Chapter  Google Scholar 

  9. Brown, R., Hwang, P.: Introduction to Random Signals and Applied Kalman Filtering. John Wiley & Sons, Chichester (1997)

    MATH  Google Scholar 

  10. Buxton, H.: Generative models for learning and understanding dynamic scene activity. In: ECCV Workshop on Generative Model Based Vision, pp. 71–81 (2002)

    Google Scholar 

  11. Buxton, H., Gong, S.: Advanced visual surveillance using bayesian networks. In: International Conference on Computer Vision, pp. 111–123 (1995)

    Google Scholar 

  12. Calisi, D., Censi, A., Iocchi, L., Nardi, D.: OpenRDK: a modular framework for robotic software development. In: Proc. of Int. Conf. on Intelligent Robots and Systems (IROS), pp. 1872–1877 (2008)

    Google Scholar 

  13. Calisi, D., Farinelli, A., Iocchi, L., Nardi, D.: Autonomous navigation and exploration in a rescue environment. In: Proceedings of the 2nd European Conference on Mobile Robotics (ECMR), pp. 110–115 (2005)

    Google Scholar 

  14. Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: IAT 2004: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 302–308. IEEE Computer Society, Washington (2004)

    Google Scholar 

  15. Choset, H.: Coverage for robotics - a survey of recent results. Ann. Math. Artif. Intell. 31(1-4), 113–126 (2001)

    Article  Google Scholar 

  16. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(5), 564–575 (2003)

    Article  Google Scholar 

  17. Correll, N., Martinoli, A.: Robust distributed coverage using a swarm of miniature robots. In: Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 379–384 (2007)

    Google Scholar 

  18. Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency constraints. In: Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 385–390 (2007)

    Google Scholar 

  19. Farinelli, A., Iocchi, L., Nardi, D.: Multi robot systems: A classification focused on coordination. IEEE Transactions on System Man and Cybernetics, part B 34(5), 2015–2028 (2004)

    Article  Google Scholar 

  20. Farinelli, A., Iocchi, L., Nardi, D., Ziparo, V.A.: Assignment of dynamically perceived tasks by token passing in multi-robot systems. Proceedings of the IEEE 94(7), 1271–1288 (2006)

    Article  Google Scholar 

  21. Forssén, P.E.: Maximally stable colour regions for recognition and matching. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, IEEE, Minneapolis, USA (2007)

    Google Scholar 

  22. Gage, A., Murphy, R.R.: Affective recruitment of distributed heterogeneous agents. In: Proc. of Nineteenth National Conference on Artificial Intelligence, pp. 14–19 (2004)

    Google Scholar 

  23. Gerkey, B., Mataric, M.J.: Principled communication for dynamic multi-robot task allocation. In: Proceedings of the Int. Symposium on Experimental Robotics, pp. 353–362 (2000)

    Google Scholar 

  24. Goodman, J., O’Rourke, J.: Nearest neighbors in high dimensional spaces. In: Piotr Indy, K. (ed.) Handbook of Discrete and Computational Geometry, 2nd edn. IEE Professional Applications of Computing Series, vol. 5, ch. 39 (2004)

    Google Scholar 

  25. Harville, M., Gordon, G., Woodfill, J.: Foreground segmentation using adaptive mixture models in color and depth. In: IEEE Workshop on Detection and Recognition of Events in Video, vol. 0, p. 3 (2001)

    Google Scholar 

  26. Harville, M., Li, D.: Fast, integrated person tracking and activity recognition with plan-view templates from a single stereo camera. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 398–405 (2004)

    Google Scholar 

  27. Iocchi, L., Nardi, D., Piaggio, M., Sgorbissa, A.: Distributed coordination in heterogeneous multi-robot systems. Autonomous Robots 15(2), 155–168 (2003)

    Article  Google Scholar 

  28. Jung, D., Zelinsky, A.: An architecture for distributed cooperative planning in a behaviour-based multi-robot system. Journal of Robotics and Autonomous Systems 26, 149–174 (1999)

    Article  Google Scholar 

  29. Low, K.H., Dolan, J., Khosla, P.: Adaptive multi-robot wide-area exploration and map**. In: Proceedings of the 7th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), pp. 23–30 (2008)

    Google Scholar 

  30. Marchetti, L., Grisetti, G., Iocchi, L.: A comparative analysis of particle filter based localization methods. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 442–449. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  31. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proc. of British Machine Vision Conference, vol. 1, pp. 384–393 (2002)

    Google Scholar 

  32. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision 65(1-2), 43–72 (2005)

    Article  Google Scholar 

  33. Mu noz-Salinas, R., Aguirre, E., García-Silvente, M.: People detection and tracking using stereo vision and color. Image Vision Comput. 25(6), 995–1007 (2007)

    Article  Google Scholar 

  34. Mu noz-Salinas, R., Medina-Carnicer, R., Madrid-Cuevas, F.J., Carmona-Poyato, A.: People detection and tracking with multiple stereo cameras using particle filters. J. Vis. Comun. Image Represent. 20(5), 339–350 (2009)

    Article  Google Scholar 

  35. Ning, H.Z., Wang, L., Hu, W.M., Tan, T.N.: Articulated model based people tracking using motion models. In: Proc. Int. Conf. Multi-Model Interfaces, pp. 115–120 (2002)

    Google Scholar 

  36. Parker, L.E.: ALLIANCE: An architecture for fault tolerant multirobot cooperation. IEEE Transactions on Robotics and Automation 14(2), 220–240 (1998)

    Article  Google Scholar 

  37. Portugal, D., Rocha, R.: Msp algorithm: multi-robot patrolling based on territory allocation using balanced graph partitioning. In: SAC 2010: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1271–1276. ACM, New York (2010)

    Chapter  Google Scholar 

  38. Qu, Y.G.Z.: Coverage control for a mobile robot patrolling a dynamic and uncertain environment. In: WCICA 2004: Proceedings of 5th World Congress on Intelligent Control and Automation, pp. 4899–4903 (2004)

    Google Scholar 

  39. Sak, T., Wainer, J., Goldenstein, S.K.: Probabilistic multiagent patrolling. In: Zaverucha, G., da Costa, A.L. (eds.) SBIA 2008. LNCS (LNAI), vol. 5249, pp. 124–133. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  40. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252 (1999)

    Google Scholar 

  41. Tan, T.N., Sullivan, G.D., Baker, K.D.: Model-based localization and recognition of road vehicles. International Journal Computer Vision 29(1), 22–25 (1998)

    Google Scholar 

  42. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  43. Tian, T., Tomasi, C.: Comparison of approaches to egomotion computation. In: Computer Vision and Pattern Recognition, pp. 315–320 (1996)

    Google Scholar 

  44. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and practice of background maintenance. In: IEEE International Conference on Computer Vision, vol. 1, p. 255 (1999)

    Google Scholar 

  45. Valera, M., Velastin, S.A.: chap. 1. A Review of the State-of-the-Art in Distributed Surveillance Systems. In: Velastin, S.A., Remagnino, P. (eds.) Intelligent Distributed Video Surveillance Systems. IEE Professional Applications of Computing Series, vol. 5, pp. 1–25 (2006)

    Google Scholar 

  46. Werger, B.B., Mataric, M.J.: Broadcast of local eligibility for multi-target observation. In: DARS 2000, pp. 347–356 (2000)

    Google Scholar 

  47. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computer Survey 38, 13 (2006)

    Article  Google Scholar 

  48. Ziparo, V., Kleiner, A., Nebel, B., Nardi, D.: Rfid-based exploration for large robot teams. In: Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), Rome, Italy (2007)

    Google Scholar 

  49. Zlot, R., Stenz, A., Dias, M.B., Thayer, S.: Multi robot exploration controlled by a market economy. In: Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 3016–3023 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Espina, M.V. et al. (2011). Multi-robot Teams for Environmental Monitoring. In: Remagnino, P., Monekosso, D.N., Jain, L.C. (eds) Innovations in Defence Support Systems – 3. Studies in Computational Intelligence, vol 336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18278-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18278-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18277-8

  • Online ISBN: 978-3-642-18278-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation