Towards Automatic Deduction and Event Reconstruction Using Forensic Lucid and Probabilities to Encode the IDS Evidence

  • Conference paper
Recent Advances in Intrusion Detection (RAID 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6307))

Included in the following conference series:

Abstract

We apply the theoretical framework and formal model of the observation tuple with the credibility weight for forensic analysis of the IDS data and the corresponding event reconstruction. Forensic Lucid - a forensic case modeling and specification language is used for the task. In the ongoing theoretical and practicalwork, Forensic Lucid is augmented with the Dempster-Shafer theory of mathematical evidence to include the credibility factors of the evidential IDS observations. Forensic Lucid’s toolset is practically being implemented within the General Intensional Programming System (GIPSY) and the probabilisticmodel-checking tool PRISM as a backend to compile the Forensic Lucid model into the PRISM’s code and model-check it. This work may also help with further generalization of the testing methodology of IDSs [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arasteh, A.R., Debbabi, M., Sakha, A., Saleh, M.: Analyzing multiple logs for forensic evidence. Digital Investigation Journal 4(1), 82–91 (2007)

    Article  Google Scholar 

  2. Ashcroft, E.A., Faustini, A., Jagannathan, R., Wadge, W.W.: Multidimensional, Declarative Programming. Oxford University Press, London (1995)

    Google Scholar 

  3. Gladyshev, P., Patel, A.: Finite state machine approach to digital event reconstruction. Digital Investigation Journal 2(1) (2004)

    Google Scholar 

  4. Haenni, R., Kohlas, J., Lehmann, N.: Probabilistic argumentation systems. Tech. rep., Institute of Informatics, University of Fribourg, Fribourg, Switzerland (October 1999)

    Google Scholar 

  5. Mokhov, S.A.: Encoding forensic multimedia evidence from MARF applications as Forensic Lucid expressions. In: CISSE 2008, pp. 413–416. Springer, Heidelberg (December 2008)

    Google Scholar 

  6. Mokhov, S.A.: Towards syntax and semantics of hierarchical contexts in multimedia processing applications using MARFL. In: COMPSAC, pp. 1288–1294. IEEE CS, Los Alamitos (2008)

    Google Scholar 

  7. Mokhov, S.A., Paquet, J., Debbabi, M.: Formally specifying operational semantics and language constructs of Forensic Lucid. In: IMF 2008, pp. 197–216. GI (September 2008)

    Google Scholar 

  8. Mokhov, S.A., Paquet, J., Debbabi, M.: Reasoning about a simulated printer case investigation with Forensic Lucid. In: HSC 2009. SCS (October 2009) (to appear)

    Google Scholar 

  9. Mokhov, S.A., Vassev, E.: Self-forensics through case studies of small to medium software systems. In: IMF 2009, pp. 128–141. IEEE CS, Los Alamitos (2009)

    Google Scholar 

  10. Otrok, H., Paquet, J., Debbabi, M., Bhattacharya, P.: Testing intrusion detection systems in MANET: A comprehensive study. In: CNSR 2007, pp. 364–371. IEEE CS, Los Alamitos (2007)

    Google Scholar 

  11. Paquet, J., Mokhov, S.A., Tong, X.: Design and implementation of context calculus in the GIPSY environment. In: COMPSAC 2008, pp. 1278–1283. IEEE CS, Los Alamitos (2008)

    Google Scholar 

  12. Shafer, G.: The Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Google Scholar 

  13. Wan, K.: Lucx: Lucid Enriched with Context. Ph.D. thesis, Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mokhov, S.A., Paquet, J., Debbabi, M. (2010). Towards Automatic Deduction and Event Reconstruction Using Forensic Lucid and Probabilities to Encode the IDS Evidence. In: Jha, S., Sommer, R., Kreibich, C. (eds) Recent Advances in Intrusion Detection. RAID 2010. Lecture Notes in Computer Science, vol 6307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15512-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15512-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15511-6

  • Online ISBN: 978-3-642-15512-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation