Part of the book series: IFMBE Proceedings ((IFMBE,volume 25/1))

Abstract

Tumor irradiations using scanned particle beams provide superior target conformity and dose homogeneity for stationary tumors. In case of intrafractional motion interference between beam scanning and tumor motion causes deteriorations of the deposited dose distributions necessitating dedicated motion mitigation techniques. Different techniques are currently investigated at GSI. The most favorable among them in terms of target conformity and sparing of organs at risk and normal tissues is beam tracking, i.e. adapting the Bragg peak positions on-line according to the tumor motion in all three dimensions. Adaptation of Bragg peak positions only does not mitigate possible dose changes along the beam’s path. Consideration of the respective dose changes has been shown to be beneficial for a future clinical implementation of beam tracking but has to be performed on-line, i.e. during treatment, because of tumor trajectory variations between different respiratory cycles. Functionality to account for these dose changes caused by tumor motion has been implemented in the experimental branch of the therapy control system at GSI. Basic functionality of the on-line dose compensation was tested experimentally with a series of measurements in 2D with radiographic films and in 3D with an array of ionization chambers. In both cases a reference irradiation could be reproduced using the dose compensation functionality. In case of the ionization chamber measurement severe over- and under-dosages of up to 25% compared to reference irradiation for 3D beam tracking without on-line dose compensation could be reduced to below 3% by additionally employing the dose compensation functionality. It has been shown that the fluence of every rasterpoint can be individually adapted during irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 320.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lüchtenborg, R., Saito, N., Chaudhri, N., Durante, M., Rietzel, E., Bert, C. (2009). On-line compensation of dose changes introduced by tumor motion during scanned particle therapy. In: Dössel, O., Schlegel, W.C. (eds) World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany. IFMBE Proceedings, vol 25/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03474-9_125

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03474-9_125

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03472-5

  • Online ISBN: 978-3-642-03474-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation