An Algorithm for Generating Arguments in Classical Predicate Logic

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5590))

  • 1285 Accesses

Abstract

There are a number of frameworks for modelling argumentation in logic. They incorporate a formal representation of individual arguments and techniques for comparing conflicting arguments. A common assumption for logic-based argumentation is that an argument is a pair 〈Φ,α〉 where Φ is a minimal subset of the knowledgebase such that Φ is consistent and Φ entails the claim α. Different logics provide different definitions for consistency and entailment and hence give us different options for argumentation. An appealing option is classical first-order logic which can express much more complex knowledge than possible with defeasible or classical propositional logics. However the computational viability of using classical first-order logic is an issue. Here we address this issue by using the notion of a connection graph and resolution with unification. We provide a theoretical framework and algorithm for this, together with some theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amgoud, L., Cayrol, C.: A model of reasoning based on the production of acceptable arguments. Annals of Math. and A.I. 34, 197–216 (2002)

    MATH  Google Scholar 

  2. Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and inconsistent knowledge bases. In: Proceedings of the 9th Annual Conference on Uncertainty in Artificial Intelligence (UAI 1993), pp. 1449–1445 (1993)

    Google Scholar 

  3. Besnard, Ph., Hunter, A.: A logic-based theory of deductive arguments. Artificial Intelligence 128, 203–235 (2001)

    Article  MATH  Google Scholar 

  4. Besnard, P., Hunter, A.: Practical first-order argumentation. In: Proceedings of the 20th American National Conference on Artificial Intelligence (AAAI 2005), pp. 590–595. MIT Press, Cambridge (2005)

    Google Scholar 

  5. Besnard, Ph., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)

    Book  Google Scholar 

  6. Chesñevar, C., Maguitman, A., Loui, R.: Logical models of argument. ACM Computing Surveys 32, 337–383 (2000)

    Article  Google Scholar 

  7. Dung, P., Kowalski, R., Toni, F.: Dialectical proof procedures for assumption-based admissible argumentation. Artificial Intelligence 170, 114–159 (2006)

    Article  MATH  Google Scholar 

  8. Efstathiou, V., Hunter, A.: Algorithms for effective argumentation in classical propositional logic: A connection graph approach. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 272–290. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Elvang-Gøransson, M., Krause, P., Fox, J.: Dialectic reasoning with classically inconsistent information. In: Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence (UAI 1993), pp. 114–121. Morgan Kaufmann, San Francisco (1993)

    Chapter  Google Scholar 

  10. García, A., Simari, G.: Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming 4(1), 95–138 (2004)

    Article  MATH  Google Scholar 

  11. Kowalski, R.: A proof procedure using connection graphs. Journal of the ACM 22, 572–595 (1975)

    Article  MATH  Google Scholar 

  12. Kowalski, R.: Logic for problem solving. North-Holland Publishing, Amsterdam (1979)

    MATH  Google Scholar 

  13. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible priorities. Journal of Applied Non-Classical Logics 7, 25–75 (1997)

    Article  MATH  Google Scholar 

  14. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Gabbay, D. (ed.) Handbook of Philosophical Logic. Kluwer, Dordrecht (2000)

    Google Scholar 

  15. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Efstathiou, V., Hunter, A. (2009). An Algorithm for Generating Arguments in Classical Predicate Logic. In: Sossai, C., Chemello, G. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2009. Lecture Notes in Computer Science(), vol 5590. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02906-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02906-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02905-9

  • Online ISBN: 978-3-642-02906-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation