Solving the Delay-Constrained Capacitated Minimum Spanning Tree Problem Using a Dandelion-Encoded Evolutionary Algorithm

  • Conference paper
Simulated Evolution and Learning (SEAL 2008)

Abstract

The Delay-Constrained Capacitated Minimum Spanning Tree (DC-CMST) is a recently proposed problem which arises in the design of the topology of communications networks. The DC-CMST proposes the joint optimization of the network topology in terms of the traffic capacity and its mean time delay. In this paper, an evolutionary algorithm which uses Dandelion-encoding is proposed to solve the problem. The Dandelion code has been recently proposed as an effective way of encoding trees in evolutionary algorithms, due to its good properties of locality. We describe the main characteristics of the algorithm, and compare its results with that of an existing heuristic for the DC-CMST. We show that our Dandelion-encoded evolutionary algorithm is able to obtain better results in all the instances tackled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, Y.J., Atiquzzaman, M.: Least cost heuristic for the delay-constrained capacitated minimum spanning tree problem. Computer Communications 28, 1371–1379 (2005)

    Article  Google Scholar 

  2. Lee, Y.J., Atiquzzaman, M.: Exact algorithm for delay-constrained capacitated minimum spanning tree network. IET Communications 1(6), 1238–1247 (2007)

    Article  Google Scholar 

  3. Thomadsen, T., Larsen, J.: A hub location problem with fully interconnected backbone and access networks. Computers & Operations Research 34, 2520–2531 (2007)

    Article  MATH  Google Scholar 

  4. Astic, I., Festor, O.: A hierarchical topology discovery sevice for IPv6 networks. In: Proc. of the IEEE/IFIP Network Operations and Management Symposium, pp. 497–510 (2002)

    Google Scholar 

  5. Bejerano, Y., Breitbart, M., Rastogi, R.: Physical topology discovery for large multi subnet networks. In: Proc. of IEEE INFOCOM 2003, pp. 342–352 (2003)

    Google Scholar 

  6. Gavish, B.: Parallel savings heuristic for the topological design of local access tree networks. In: Proc. of IEEE INFOCOM 2003, pp. 130–139 (2003)

    Google Scholar 

  7. Esau, L., Williams, K.: On teleprocessing system design, part II. IBM System Journal 3, 142–147 (1996)

    Google Scholar 

  8. Chandy, K.M., Lo, T.: The capacitated minimum spanning tree. Networks 3, 173–181 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Papadimitriou, C.: The complexity of the capacitated minimum spanning tree problem. Networks 8, 217–230 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karaman, A., Hassanein, H.: DCMC–delay constrained multipoint communication with multiple sources. In: Proc. of the IEEE International Symposium on Computers and Communications (2003)

    Google Scholar 

  11. Reeves, D.S., Salama, H.F.: A distributed algorithm for delay-constrained unicast routing. IEEE/ACM Transactions on Networking 8(2), 239–250 (2000)

    Article  Google Scholar 

  12. Paulden, T., Smith, D.K.: From the Dandelion code to the Rainbow code: a class of bijective spanning tree representations with linear complexity and bounded locality. IEEE Trans. Evol. Comput. 10(2), 108–123 (2006)

    Article  Google Scholar 

  13. Thompson, E., Paulden, T., Smith, D.K.: The Dandelion code: a new coding of spanning trees for genetic algorithms. IEEE Trans. Evol. Comput. 11(1), 91–100 (2007)

    Article  Google Scholar 

  14. Deo, N., Micikevicius, P.: Prüfer-like codes for labeled trees. Congressus Numerantium 151, 65–73 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Picciotto, S.: How to encode a tree, Ph.D. dissertation, Univ. California, San Diego (1999)

    Google Scholar 

  16. Goldberg, D.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  17. Prim, R.C.: Shortest connection networks and some generalisations. Bell System Technical Journal 36, 1389–1401 (1957)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pérez-Bellido, Á.M., Salcedo-Sanz, S., Ortiz-García, E.G., Portilla-Figueras, A., Naldi, M. (2008). Solving the Delay-Constrained Capacitated Minimum Spanning Tree Problem Using a Dandelion-Encoded Evolutionary Algorithm. In: Li, X., et al. Simulated Evolution and Learning. SEAL 2008. Lecture Notes in Computer Science, vol 5361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89694-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89694-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89693-7

  • Online ISBN: 978-3-540-89694-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation