Transposition Distance Based on the Algebraic Formalism

  • Conference paper
Advances in Bioinformatics and Computational Biology (BSB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5167))

Included in the following conference series:

Abstract

In computational biology, genome rearrangements is a field in which we study mutational events affecting large portions of a genome. One such event is the transposition, that changes the position of contiguous blocks of genes inside a chromosome. This event generates the problem of transposition distance, that is to find the minimal number of transpositions transforming one chromosome into another. It is not known whether this problem is \(\mathcal{NP}\)-hard or has a polynomial time algorithm. Some approximation algorithms have been proposed in the literature, whose proofs are based on exhaustive analysis of graphical properties of suitable cycle graphs. In this paper, we follow a different, more formal approach to the problem, and present a 1.5-approximation algorithm using an algebraic formalism. Besides showing the feasibility of the approach, the presented algorithm exhibits good results, as our experiments show.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. Journal of Computational Biology 8(5), 483–491 (2001)

    Article  Google Scholar 

  2. Bafna, V., Pevzner, P.A.: Sorting by transpositions. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, USA, January 1995, pp. 614–623 (1995)

    Google Scholar 

  3. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM Journal on Discrete Mathematics 11(2), 224–240 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benoît-Gagné, M., Hamel, S.: A new and faster method of sorting by transpositions. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 131–141. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Christie, D.A.: Sorting permutations by block-interchanges. Information Processing Letters 60(4), 165–169 (1996)

    Article  MathSciNet  Google Scholar 

  6. Christie, D.A.: Genome Rearrangement Problems. PhD thesis, Glasgow University (1998)

    Google Scholar 

  7. Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transpositions. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 204–215. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS 1995), October 1995, pp. 581–592. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  9. Hartman, T.: A simpler 1.5-approximation algorithm for sorting by transpositions. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 156–169. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Hartman, T., Shamir, R.: A simpler and faster 1.5-approximation algorithm for sorting by transpositions. In: Proceedings of CPM 2003, pp. 156–169 (2003) (extended version)

    Google Scholar 

  11. Honda, M.I.: Implementation of the algorithm of Hartman for the problem of sorting by transpositions. Master’s thesis, Department of Computer Science, University of Brasilia (in portuguese) (2004)

    Google Scholar 

  12. Meidanis, J., Dias, Z.: An alternative algebraic formalism for genome rearrangements. In: Sankoff, D., Nadeau, J.H. (eds.) Comparative Genomics: Empirical and Analyitical Approaches to Gene Order Dynamics, Map Alignment and Evolution of Gene Families, pp. 213–223. Kluwer Academic Publishers, Dordrecht (November 2000)

    Google Scholar 

  13. Meidanis, J., Walter, M.E.M.T., Dias, Z.: Transposition distance between a permutation and its reverse. In: Baeza-Yates, R. (ed.) Proceedings of the 4th South American Workshop on String Processing (WSP 1997), Valparaiso, Chile, pp. 70–79. Carleton University Press (1997)

    Google Scholar 

  14. Mira, C., Meidanis, J.: Algebraic formalism for genome rearrangements (part 1). Technical Report IC-05-10, Institute of Computing - University of Campinas (June 2005)

    Google Scholar 

  15. Mira, C.V.G., Meidanis, J.: Analysis of sorting by transpositions based on algebraic formalism. In: The Eighth Annual International Conference on Research in Computational Molecular Biology (RECOMB 2004) (March 2004)

    Google Scholar 

  16. Walter, M.E.M.T., Curado, L.R.A.F., Oliveira, A.G.: Working on the problem of sorting by transpositions on genome rearrangements. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 372–383. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Walter, M.E.M.T., Dias, Z., Meidanis, J.: A new approach for approximating the transposition distance. In: String Processing and Information Retrieval - SPIRE 2000, pp. 199–208 (2000)

    Google Scholar 

  18. Walter, M.E.M.T., Oliveira, E.T.G.: Extending the theory of Bafna and Pevzner for the problem of sorting by transpositions. Tendências em Matemática Aplicada e Computacional - TEMA - SBMAC 3(1), 213–222 (2002) (in portuguese)

    Google Scholar 

  19. Walter, M.E.M.T., Soares, L.S.N., Dias, Z.: Branch-and-bound algorithms for the problem of sorting by transpositions on genome rearrangements. In: Proceedings of the 26th Congress of the Brazilian Computer Society, XXXIII Seminário integrado de hardware e software – SEMISH, pp. 69–81 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ana L. C. Bazzan Mark Craven Natália F. Martins

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mira, C.V.G., Dias, Z., Santos, H.P., Pinto, G.A., Walter, M.E.M.T. (2008). Transposition Distance Based on the Algebraic Formalism. In: Bazzan, A.L.C., Craven, M., Martins, N.F. (eds) Advances in Bioinformatics and Computational Biology. BSB 2008. Lecture Notes in Computer Science(), vol 5167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85557-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85557-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85556-9

  • Online ISBN: 978-3-540-85557-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation