Soil Carbon Dynamics in a Subtropical Mountainous Region, South China: Results Based on Carbon Isotopic Tracing

  • Chapter
Soil Mineral Microbe-Organic Interactions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ågren GI, Bosatta E, Balesdent J (1996) Isotope discrimination during decomposition of organic matter: a theoretical analysis. Soil Sci Soc Am J 60:1121–1126

    Google Scholar 

  • Balesdent J (1987) The turnover of soil organic fractions estimated by radiocarbon dating. Sci Total Environ 62:405–408

    Article  Google Scholar 

  • Balesdent J, Wagner GH, Mariotti A (1988) Soil organic matter turnover in long term field experiments as revealed by carbon 13 natural abundance. Soil Sci Soc Am J 52:118–124

    Google Scholar 

  • Balesdent J, Mariotti A, Boisgontier D (1990) Effect of tillage on soil organic carbon mineralization estimated from 13C abundance in maize fields. J Soil Sci 41:587–596

    Article  Google Scholar 

  • Balesdent J, Girardin C, Mariotti A (1993) Site-related δ 13C of trees and soil organic matter in a temperate forest. Ecology 74:1713–1721

    Article  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Euro J Soil Sci 47:151–163

    Article  Google Scholar 

  • Becker-Heidmann P, Scharpenseel HW 1986) Thin layer δ 13C and D14C monitoring of “lessive” soil profiles. In: Stuive M, Kra RS (eds) Proceedings of the 12th international 14C conference. Radiocarbon 28(2A):383–390

    Google Scholar 

  • Binkley D, Resh SC (1999) Rapid changes in soils following Eucalyptus afforestation in Hawaii. Soil Sci Soc Am J 63:222–225

    Google Scholar 

  • Bird MI, Chivas AR, Head J (1996) A latitudinal gradient in carbon turnover times in forest soils. Nature 381:143–146

    Article  Google Scholar 

  • Boutton TW, Archer SR, Midwood AJ, Zitzer SF, Bol R (1998) δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82:5–41

    Article  Google Scholar 

  • Chen QQ, Shen CD, Peng SL, Sun YM, Yi WX, Li ZA, Jiang MT (2002a) Soil organic matter turnover in the subtropical mountainous region of south China. Soil Sci 167:401–415

    Article  Google Scholar 

  • Chen QQ, Sun YM, Shen CD, Peng SL, Yi WX, Li ZA, Jiang MT (2002b) Organic matter turnover rates and CO2 flux from organic matter decomposition of mountain soil profiles in the subtropical area, south China. Catena 49: 217–229

    Article  Google Scholar 

  • Chen QQ, Shen CD, Sun YM, Yi WX, Li ZA, Jiang MT (2005) Mechanism of distribution of soil organic matter with depth due to evolution of soil profiles at the Dinghushan Biosphere Reserve. Acta Pedologica Sinica 42(1):1–8 (in Chinese with English abstract)

    Google Scholar 

  • Cole V, Cerri C, Minami K, Mosier A, Rosenberg N, Sauerbeck D (1996) Agricultural options for mitigations of greenhouse gas emissions. In: Watson RT, Zinyowera MC, Moss RH (eds) Impacts, adaptations and mitigation of climate change: scientific-technical analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp 745–771

    Google Scholar 

  • Collins HP, Paul EA, Blevens RL, Bundy LG, Christenson DR, Dick WA, Huggins DR (1999) Soil organic matter dynamics in corn-based agroecosystems of the central USA: results from 13C natural abundance. Soil Sci Soc Am J 63: 584–599

    Google Scholar 

  • Collins HP, Elliott ET, Paustian K, Bundy LG, Dick WA, Huggins DR, Smucker AJM, Paul EA (2000) Soil carbon pools and fluxes in long-term corn belt agroecosystems. Soil Biol Biochem 32:157–168

    Article  Google Scholar 

  • Deng BQ, Lu LC, Wang DQ (1990) The estimation of the microbial respiratory capacity and carbon balance of the soils in the forest ecosystem of Dinghushan Biosphere Reserve. Tropical and Subtropical Forest Ecosystem 6:41–46 (in Chinese with English abstract)

    Google Scholar 

  • Eswaran H, Van den Berg E, Reich P (1993) Organic carbon in soils of the world. Soil Sci Soc Am J 57:192–194

    Google Scholar 

  • FAO (1998) World reference base for soil resources. World soil resources report 84. FAO, Rome, Italy, 88 pp

    Google Scholar 

  • Follett RF, Paul EA, Leavitt SW, Halvorson AD, Lyon D, Peterson GA (1997) Carbon isotope ratios of Great Plains soils and in wheat-fallow crop** systems. Soil Sci Soc Am J 61:1068–1077

    Google Scholar 

  • Garten CT, Cooper LW, Post III WM, Hanson PJ (2000) Climate controls on forest soil C isotope ratios in the southern Appalachian Mountains. Ecology 81:1108–1119

    Article  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Gregorich EG, Ellert BH, Monreal CM (1995) Turnover of soil organic matter and storage of corn residue carbon estimated from natural 13C abundance. Can J Soil Sci 75:161–167

    Google Scholar 

  • Harden JW, Sundquist ET, Stallard RF, Mark RK (1992) Dynamics of soil carbon during deglaciation of the Laurentide Ice Sheet. Science 258:1921–1923

    Article  Google Scholar 

  • Hobbie EA, Gregg J, Olszyk DM, Rygiewicz PT, Tingey DT (2002) Effects of climate change on labile and structural carbon in Douglas-fir needles as estimated by δ 13C and Carea measurements. Global Change Biol 8:1072–1084

    Article  Google Scholar 

  • Hobbie EA, Johnson MG, Rygiewicz PT, Tingey DT, Olszyk DM (2004) Isotopic estimates of new carbon inputs into litter and soils in a four-year climate change experiment with Douglas-fir. Plant Soil 259:331–343

    Article  Google Scholar 

  • Houghton RA, Davidson EA, Woodwell GM (1998) Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance. Global Biogeochem Cy 12:25–34

    Article  Google Scholar 

  • Ineson P, Cotrufo MF, Bol R, Harkness DD, Blum H (1996) Quantification of soil carbon inputs under elevated CO2: C3 plants in a C4 soil. Plant Soil 187: 345–350

    Article  Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. Forest Ecol Manag 140:227–238

    Article  Google Scholar 

  • Faegri K, Iverson J (1989) Appendix A. In: Faegri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis. Blackwell, New York, pp 69–89

    Google Scholar 

  • Kalembasa SJ, Jenkinson DS (1973) A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. J Sci Food Agric 24:1085–1095

    Article  Google Scholar 

  • Kononova MM (1966) Soil organic matter: its nature, its role in soil formation and soil fertility, 2nd edn. Pergamon Press, New York, 365 pp

    Google Scholar 

  • Loiseau P, Soussana JF (1999) Elevated [CO2], temperature increase and N supply effects on the turnover of below-ground carbon in a temperate grassland ecosystem. Plant Soil 210:233–247

    Article  Google Scholar 

  • Macko A, Estep MLF (1984) Microbial alteration of stable nitrogen and carbon isotopic compositions of organic matter. Org Geochem 6:787–790

    Article  Google Scholar 

  • Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740

    Article  Google Scholar 

  • Martin A, Mariotti A, Balesdent J, Lavelle P, Vuattoux R (1990) Estimate of organic matter turnover rate in savanna soil by 13C natural abundance measurements. Soil Biol Biochem 22:517–523

    Article  Google Scholar 

  • Mary B, Mariotti A, Morel JL (1992) Use of 13C variations at natural abundance for studying the biodegradation of root mucilage, roots and glucose in soil. Soil Biol Biochem 24:1065–1072

    Article  Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, Oxford

    Google Scholar 

  • Paustian K, Levine E, Post WM, Ryzhova IM (1997) The use of models to integrate information and understanding of soil C at the regional scale. Geoderma 79:227–260

    Article  Google Scholar 

  • Powers JS, Schlesinger WH (2002) Geographic and vertical patterns of stable carbon isotopes in tropical rain forest soils of Costa Rica. Geoderma 109: 141–160

    Article  Google Scholar 

  • Raich JW, Potter CS (1995) Global pattern of carbon dioxide emission from soil. Global Biogeochem Cy 9:23–36

    Article  Google Scholar 

  • Rosenzweig C, Hillel D (2000) Soils and global climate change: challenges and opportunities. Soil Sci 165:47–56

    Article  Google Scholar 

  • Schweizer M, Fear J, Cadish G (1999) Isotopic (13C) fractionation during plant residue decomposition and its implications for soil organic matter studies. Rapid Commun Mass Sp 13:1284–1290

    Article  Google Scholar 

  • Scott NA, Tate KR, Ford-Robertson J, Giltrap DJ, Smith CT (1999) Soil carbon storage in plantation forests and pastures: land-use change implications. Tellus B 51:326–335

    Article  Google Scholar 

  • Shen CD, Liu TS, Peng SL, Sun YM, Jiang MT, Yi WX, **ng CP, Gao QZ, Li ZA, Zhou GY (1999) 14C measurement of forest soils in Dinghushan Biosphere Reserve. Chinese Sci Bull 44:251–256

    Article  Google Scholar 

  • Shen CD, Yi WX, Sun YM, **ng CP, Yang Y, Peng SL, Li ZA (2000) 14C apparent ages and δ 13C distribution of forest soils in Dinghushan Natural Reserve. Quaternary Sciences 20:335–344 (in Chinese with English abstract)

    Google Scholar 

  • Shen CD, Sun YM, Yi WX, Peng SL, Li ZA (2001) Carbon isotope tracers for the restoration of degenerated forest ecosystem. Quaternary Sciences 21:452–460 (in Chinese with English abstract)

    Google Scholar 

  • Steffen W, Noble I, Canadell J, Apps M, Schulze ED, Jarvis PG (1998) The terrestrial carbon cycle: implication for the Kyoto protocol. Science 280:1393–1394

    Article  Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363

    Google Scholar 

  • Trumbore SE, Chadwick OA, Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393–396

    Article  Google Scholar 

  • Tu MZ (1984) Litter production of evergreen broad-leaf forest in Dinghushan Biosphere Reserve. Tropical and Subtropical Forest Ecosystem (2):18–23 (in Chinese with English abstract)

    Google Scholar 

  • UNFCCC (1997) Kyoto protocol to the United Nations Framework Convention on climate change. Document FCCC/CP/1997/7/ Add 1, http://www.unfccc.de

    Google Scholar 

  • Van Cleve K, Powers RF (1995) Soil carbon, soil formation, and ecosystem development. In: McFee WW, Kelly JM (eds) Carbon forms and functions in forest soils. Soil Science Society of America, Madison, WI, pp 155–200

    Google Scholar 

  • Wedin TA, Tieszen LL, Dewey B, Pastor J (1995) Carbon isotope dynamics during grass decomposition and soil organic matter formation. Ecology 76: 1383–1392

    Article  Google Scholar 

  • Wynn JG, Harden JW, Fries TL (2006) Carbon isotope depth profiles and soil organic carbon dynamics in the Mississippi Basin. Geoderma 131:89–109

    Article  Google Scholar 

  • Wynn JG, Bird MI, Wong VNL (2005) Rayleigh distillation and the depth profile of 13C/12C ratios in soil organic carbon from two soils in Iron Range National Park, Far North Queensland, Australia. Geochim Cosmochim Acta 69:1961–1973

    Article  Google Scholar 

  • **ng CP, Shen CD, Sun YM, Jiang MT, Yi WX (1998) Preliminary results of 14C ages of soil organic matter in Dinghushan subtropical forest soil. Geochimica 27:493–499 (in Chinese with English abstract)

    Google Scholar 

  • Yu ZY, Peng SL (1995) The artificial and natural restoration of tropical and subtropical forests. Acta Ecologica Sinica 15(A):1–17 (in Chinese with English abstract)

    Google Scholar 

  • Zheng Z, Cour P, Zhou HP, Qin CF (2002) Modern pollen rain in Hainan Island, Southern China: altitudinal pollen distribution in the tropical rain forest. Acta Palaeontologica Sinica 41:487–496

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, Q. et al. (2008). Soil Carbon Dynamics in a Subtropical Mountainous Region, South China: Results Based on Carbon Isotopic Tracing. In: Huang, Q., Huang, P.M., Violante, A. (eds) Soil Mineral Microbe-Organic Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77686-4_9

Download citation

Publish with us

Policies and ethics

Navigation