Bioavailability of Soil-Sorbed Pesticides and Organic Contaminants

  • Chapter
Soil Mineral Microbe-Organic Interactions
  • 2015 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander M (1999) Biodegradation and bioremediation. Academic Press, Inc., San Diego, CA

    Google Scholar 

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    Article  Google Scholar 

  • Barriuso E, Koskinen WC, Sadowsky MJ (2004) Solvent extraction characterization of bioavailability of atrazine residues in soils. J Agric Food Chem 52:6552–6556

    Article  Google Scholar 

  • Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)- degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66:1834–1843

    Article  Google Scholar 

  • Baveye P, Bladon R (1999) Bioavailability of organic xenobiotics in the environment: a critical perspective. In: Baveye P, Block J-C, Goncharuk VV (eds) Bioavailability of organic xenobiotics in the environment. Kluwer Academic Publishers, Dordrecht, pp 227–248

    Google Scholar 

  • Boesten JJTI (1993) Bioavailability of organic chemicals in soil related to their concentration in the liquid phase: a review. Sci Tot Environ Supplement: 397–407

    Google Scholar 

  • Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252

    Article  Google Scholar 

  • Boyd SA, Sheng GY, Teppen BJ, Johnston CJ (2001) Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays. Environ Sci Technol 35:4227–4234

    Article  Google Scholar 

  • Briggs GG (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors, and the parachor. J Agric Food Chem 29:1050–1059

    Article  Google Scholar 

  • Brusseau ML, Rao PSC, Bellin CA (1992) Modeling coupled processes in porous media: sorption, transformation, and transport of organic solutes. In: Wagenet RJ, Baveye P, Stewart BA (eds)Interacting processes in soil science. Lewis Publishers, Boca Raton, FL, USA

    Google Scholar 

  • Calvillo YM, Alexander M (1996) Mechanism of microbial utilization of biphenyl sorbed to polyacrylic beads. Appl Microbiol Biotechnol 45:383–390

    Article  Google Scholar 

  • Chiou CT (2002) Partition and adsorption of organic contaminants in environmental systems. John Wiley & Sons, Hoboken, NJ, USA

    Google Scholar 

  • Chiou CT, Peters LJ, Freed VH (1979) Physical concept of soil-water equilibria for nonionic organic compounds. Sci Tot Environ 206:831–832

    Google Scholar 

  • Chiou CT, Porter PE, Schmedding DW (1983) Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ Sci Technol 17:227–231

    Article  Google Scholar 

  • Chung N, Alexander M (1998) Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. Environ Sci Technol 32:855–860

    Article  Google Scholar 

  • Chung N, Alexander M (2002) Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere 48:109–115

    Article  Google Scholar 

  • Crocker FH, Guerin WF, Boyd SA (1995) Bioavailability of naphthalene sorbed to cationic surfactant-modified smectite clay. Environ Sci Technol 29:2953–2958

    Article  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    Google Scholar 

  • Dickson KL, Giesy JP, Parrish R, Wolf L (1994) Summary and conclusions. In: Hamelink JL, Landrum PF, Bergman HL, Benson WH (eds) Bioavailability: physical, chemical, and biological interactions. Lewis Publishers, Boca Raton, Florida, pp 221–230

    Google Scholar 

  • Ehlers LJ, Luthy RG (2003) Contaminant bioavailability in soil and sediment. Environ Sci Technol 37:295A–302A

    Google Scholar 

  • Feng Y, Park JH, Voice TC, Boyd SA (2000) Bioavailability of soil-sorbed biphenyl to bacteria. Environ Sci Technol 34:1977–1984

    Article  Google Scholar 

  • Friedrich M, Grosser RJ, Kern EA, Inskeep WP, Ward DM (2000) Effect of model sorptive phases on phenanthrene biodegradation: molecular analysis of enrichments and isolates suggests selection based on bioavailability. Appl Environ Microbiol 66:2703–2710

    Article  Google Scholar 

  • Graber ER, Borisover M (2005) Exploring organic compound interactions with organic matter: the thermodynamic cycle approach. Colloid Surface A 265:11–22

    Article  Google Scholar 

  • Grosser RJ, Friedrich M, Ward DM, Inskeep WP (2000) Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates. Appl Environ Microbiol 66:2695–2702

    Article  Google Scholar 

  • Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 58:1142–1152

    Google Scholar 

  • Guerin WF, Boyd SA (1993) Bioavailability of sorbed naphthalene to bacteria: influence of contaminant aging and soil organic carbon content. In: Linn DM (ed) Sorption and degradation of pesticides and organic chemicals in soil. Soil Science Society of America, Madison, WI, pp 197–208

    Google Scholar 

  • Guerin WF, Boyd SA (1997) Bioavailability of naphthalene associated with natural and synthetic sorbents. Water Res 31:1504–1512

    Article  Google Scholar 

  • Hatzinger PB, Alexander M (1995) Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29:537–545

    Article  Google Scholar 

  • Karickhoff SW (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10:833–846

    Article  Google Scholar 

  • Kelsey JW, Kottler BD, Alexander M (1997) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 21:214–217

    Google Scholar 

  • Kiely T, Donaldson D, Grube A (2004) Pesticides industry sales and usage: 2000 and 2001 market estimates. US Environmental Protection Agency, Office of Prevention, Pesticides & Toxic Substances, Washington, DC.

    Google Scholar 

  • Laird DA, Barriuso E, Dowdy RH, Koskinen WC (1992) Adsorption of atrazine on smectites. Soil Sci Soc Am J 56:62–67

    Google Scholar 

  • Laird DA, Fleming PD (1999) Mechanisms for adsorption of organic bases on hydrated smectite surfaces. Environ Toxicol Chem 18:1668–1672

    Article  Google Scholar 

  • Lambert SM (1967) Functional relationship between sorption in soil and chemical structure. J Agric Food Chem 15:572–576

    Article  Google Scholar 

  • Lambert SM (1968) Omega, a useful index of soil sorption equilibria. J Agric Food Chem 16:340–343

    Article  Google Scholar 

  • Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ, Jr, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347

    Article  Google Scholar 

  • Mihelcic JR, Lueking DR, Mitzell RJ, Stapleton JM (1993) Bioavailability of sorbed- and separate-phase chemicals. Biodegradation 4:141–153

    Article  Google Scholar 

  • National Research Council (2003) Bioavailability of contaminants in soils and sediments: processes, tools, and applications. The National Academies Press, Washington DC, USA

    Google Scholar 

  • Ogram AV, Jessup RE, Ou LT, Rao PSC (1985) Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy) acetic acid in soils. Appl Environ Microbiol 49:582–587

    Google Scholar 

  • Park J-H, Feng Y, Ji P, Voice TC, Boyd SA (2003) Assessment of bioavailability of soil-sorbed atrazine. Appl Environ Microbiol 69:3288–3298

    Article  Google Scholar 

  • Pignatello JP, Sawhney BL, Frink CR (1987) EBD: persistence in soil. Science 236:898

    Google Scholar 

  • Sabljic A (1989) Quantitative modeling of soil sorption for xenobiotic chemicals. Environ Health Persp 83:179–190

    Article  Google Scholar 

  • Scow KM, Johnson CR (1997) Effect of sorption on biodegradation of soil pollutants. Adv Agron 58:1–56

    Article  Google Scholar 

  • Scribner SL, Benzing TR, Sun S, Boyd SA (1992) Desorption and bioavailability of aged simazine residues in soil from a continuous corn field. J Environ Qual 21:115–120

    Article  Google Scholar 

  • Sheng GY, Boyd SA (2000) Polarity effect on dichlorobenzene sorption by hexadecyltrimethylammonium-exchanged clays. Clays Clay Miner 48:43–50

    Article  Google Scholar 

  • Shimp RJ, Young RL (1988) Availability of organic chemicals for biodegradation in settled bottom sediments. Ecotox Environ Safe 15:31–45

    Article  Google Scholar 

  • Smith SC, Ainsworth CC, Traina SJ, Hicks RJ (1992) Effect of sorption on the biodegradation of quinoline. Soil Sci Soc Am J 56:737–746

    Google Scholar 

  • Steen WC, Parris DF, Baughman GL (1980) Effects of sediment sorption on microbial degradation of toxic substances. In: Baker RA (ed) Contaminants and sediments. Ann Arbor Sci, Ann Arbor, MI, pp 477–482

    Google Scholar 

  • Steinberg SM, Pignatello JJ, Sawhney BL (1987) Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores. Environ Sci Technol 21: 1201–1208

    Article  Google Scholar 

  • Tang WC, White JC, Alexander M (1998) Utilization of sorbed compounds by microorganisms specifically isolated for that purpose. Appl Microbiol Biotechnol 49:117–121

    Article  Google Scholar 

  • Traina SJ, Laperche V (1999) Contaminant bioavailability in soils, sediments, and aquatic environment. Proc Natl Acad Sci USA 96:3365–3371

    Article  Google Scholar 

  • US EPA (1999) Waste research strategy. EPA Office of Research and Developement, Washington DC.

    Google Scholar 

  • US EPA (2005) http://www.epa.gov/oppt/newchems/pubs/invntory.htm

    Google Scholar 

  • Vacca DJ, Bleam WF, Hickey WJ (2005) Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Appl Environ Microbiol 71:3797–3805

    Article  Google Scholar 

  • White JC, Kelsey JW, Hatzinger PB, Alexander M (1997) Factors affecting sequestration and bioavailability of phenanthrene in soils. Environ Toxicol Chem 16:2040–2045

    Article  Google Scholar 

  • Wick LY, Ruiz de Munain A, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385

    Article  Google Scholar 

  • Wu G, Feng Y, Boyd SA (2003) Characterization of bacteria capable of degrading soil-sorbed biphenyl. Bull Environ Contam Toxicol 71:768–775

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feng, Y., Boyd, S.A. (2008). Bioavailability of Soil-Sorbed Pesticides and Organic Contaminants. In: Huang, Q., Huang, P.M., Violante, A. (eds) Soil Mineral Microbe-Organic Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77686-4_10

Download citation

Publish with us

Policies and ethics

Navigation