Dynamic and Pharmacologic Right Heart Stress Echocardiography: Right Ventricular Function, Right Coronary Artery Flow, Pulmonary Pressure, and Alveolar–Capillary Membrane Testing in the Echocardiography Laboratory

  • Chapter
Stress Echocardiography

The behavior of the right side of the heart during stress has been underemphasized and sparsely investigated by cardiologists and pneumologists. Reasons vary, but the right ventricle has traditionally been considered a passive conduit between the venous system and the lungs largely because of early animal experiments showing no increase of central venous pressure after the free wall of the right ventricle had been destroyed. In addition, ultrasound systems are generally optimized for imaging of the left ventricle. Recent pathophysiological, clinical, and prognostic data have defined an important role of the right ventricle in many conditions, including ischemic heart disease and heart failure. Given that the right ventricle and the left ventricle share a common septum, have an overlap** blood supply, and are bound together by the pericardium, changes induced by myocardial ischemia and/or heart failure are reflected in pulmonary hemodynamics and right ventricular function. Modern Doppler echocardiography allows a systematic evaluation of five key aspects of cardiopulmonary pathophysiology during stress: segmental right ventricular function; global right ventricular longitudinal function; coronary flow reserve in the posterior descending of the right coronary artery; indices of pulmonary hemodynamics, namely, pulmonary artery systolic pressure, pulmonary velocity time integrals, and pulmonary vascular resistances; and extravascular lung water in the lung, mirroring the distress of the alveolar–capillary membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 166.39
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Starr I (1943) Clinical studies on incoordination of the circulation, as determined by the response of arising. J Clin Invest 22:813–26

    Article  PubMed  CAS  Google Scholar 

  2. Kagan A (1952) Dynamic responses of the right ventricle following extensive damage by cauterization. Circulation 5:816–23

    PubMed  CAS  Google Scholar 

  3. Donald DE, Essex HE (1954) Massive destruction of the myocardium of the canine right ventricle; a study of the early and late effects. Am J Physiol 177:477–88

    PubMed  CAS  Google Scholar 

  4. Rigolin VH, Robiolio PA, Wilson JS, et al (1995) The forgotten chamber: the importance of the right ventricle. Cathet Cardiovasc Diagn 35:18–28

    Article  PubMed  CAS  Google Scholar 

  5. MacNee W (1994) Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part two. Am J Respir Crit Care Med 150:1158–68

    PubMed  CAS  Google Scholar 

  6. Armour JA, Lippincott DB, Randall WC (1973) Regional dynamic behaviour of the total right ventricle. Proc Soc Exp Biol Med 142:703–11

    PubMed  CAS  Google Scholar 

  7. Brooks H, Holland R, Al-Sadir J (1977) Right ventricular performance during ischemia: an anatomic and hemodynamic analysis. Am J Physiol 233:H505–13

    PubMed  CAS  Google Scholar 

  8. Zwissler B, Schosser R, Schwickert C, et al (1991) Perfusion of the interventricular septum during ventilation with positive end-expiratory pressure. Crit Care Med 19:1414–24

    Article  PubMed  CAS  Google Scholar 

  9. San Román JA,Vilacosta I, Rollán MJ, et al (1997) Right ventricular asynergy during dobutamine-atropine echocardiography. J Am Coll Cardiol 30:430–435

    Article  PubMed  Google Scholar 

  10. Parodi O, Marzullo P, Neglia D, et al (1984) Transient predominant right ventricular ischemia caused by coronary vasospasm. Circulation 70:170–7

    PubMed  CAS  Google Scholar 

  11. Maurer G, Nanda NC (1981) Two dimensional echocardiographic evaluation of exercise induced left and right ventricular asynergy: correlation with thallium scanning. Am J Cardiol 48:720–727

    Article  PubMed  CAS  Google Scholar 

  12. Obeid AI, Battaglia J, Lozner E (1998) Right ventricular dysfunction secondary to myocardial ischemia provoked by stress testing. Echocardiography 15:451–457

    Article  PubMed  Google Scholar 

  13. Bangalore S, Yao SS, Chaudhry FA (2007) Role of right ventricular wall motion abnormalities in risk stratification and prognosis of patients referred for stress echocardiography. J Am Coll Cardiol 50:1981–9

    Article  PubMed  Google Scholar 

  14. Shah AR, Grodman R, Salazar MF, et al (2000) Assessment of acute right ventricular dysfunction induced by right coronary artery occlusion using echocardiographic atrio-ventricular plane displacement. Echocardiography 17:513–9

    Article  PubMed  CAS  Google Scholar 

  15. Kaul S, Tei C, Hopkins JM, Shah PM (1984) Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 107:526–31

    Article  PubMed  CAS  Google Scholar 

  16. Mondillo S, Galderisi M, Ballo P, et al.; Study Group of Echocardiography of the Italian Society of Cardiology. (2006) Left ventricular systolic longitudinal function: comparison among simple M-mode, pulsed, and M-mode color tissue Doppler of mitral annulus in healthy individuals. J Am Soc Echocardiogr 19:1085–91

    Article  PubMed  Google Scholar 

  17. Lang RM, Bierig M, Devereux RB, et al.; Chamber Quantification Writing Group; American Society of Echocardiography's Guidelines and Standards Committee; European Association of Echocardiography (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–63

    Article  PubMed  Google Scholar 

  18. Pinedo M, Villacosta E, Tapia C et al (2008) Inter and intraobserver variability in echocardio-graphic evaluation of right ventricular function. Eur Heart J 29, Suppl 1

    Google Scholar 

  19. Ghio S, Recusani F, Klersy C, et al (2000) Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol 85:837–42

    Article  PubMed  CAS  Google Scholar 

  20. Otasević P, Popović Z, Pratali L, et al (2005) Right vs. left ventricular contractile reserve in one-year prognosis of patients with idiopathic dilated cardiomyopathy: assessment by dob-utamine stress echocardiography. Eur J Echocardiogr 6:429–34

    Article  PubMed  Google Scholar 

  21. Di Salvo TG, Mathier M, Semigran MJ, et al (1995) Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol 25:1143–53

    Article  PubMed  CAS  Google Scholar 

  22. Fridrich L (1989) Prognostic significance of postinfarction arrhythmias and biventricular dysfunction under stress. Clin Cardiol 12:645–55

    Article  PubMed  CAS  Google Scholar 

  23. Rigo F, Richieri M, Pasanisi E, et al (2003) Usefulness of coronary flow reserve over regional wall motion when added to dual-imaging dipyridamole echocardiography. Am J Car-diol 91:269–73

    Article  Google Scholar 

  24. Rigo F, Sicari R, Gherardi S, et al (2008) The additive prognostic value of wall motion abnormalities and coronary flow reserve during dipyridamole stress echo. Eur Heart J 29:79–88

    Article  PubMed  Google Scholar 

  25. Sicari R, Nihoyannopoulos P, Evangelista A, et al; European Association of Echocardiography (2008) Stress echocardiography expert consensus statement of European Association of Echocardiography. Eur J Echocardiogr 9:415–37

    Article  PubMed  Google Scholar 

  26. Ueno Y, Nakamura Y, Takashima H (2002) Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the right coronary artery by transthoracic Doppler echocardiography: comparison with intracoronary Doppler guidewire. J Am Soc Echocardiogr 15:1074–9

    Article  PubMed  Google Scholar 

  27. Lethen H, P Tries H, Kersting S, Lambertz H (2003) Validation of non-invasive assessment of coronary flow velocity reserve in the right coronary artery. A comparison of transthoracic echocardiographic results with intracoronary Doppler flow wire measurements. Eur Heart J 24:1567–75

    Article  PubMed  Google Scholar 

  28. Rigo F, Murer B, Ossena G, et al (2008) Transthoracic echocardiographic imaging of coronary arteries: tips, traps, and pitfalls. Cardiovasc Ultrasound 6:7

    Article  PubMed  Google Scholar 

  29. Cortigiani L, Rigo F, Gherardi S, et al (2008) Angiographic and prognostic correlates of combined coronary flow reserve assessment in left anterior descending and right coronary artery. Eur Heart J 29, Suppl 1

    Google Scholar 

  30. Rigo F, Ciampi Q, Ossena G, et al (2008) Prognostic value of combined left and right coronary flow reserve assessment in non-ischemic dilated cardiomyopathy: a vasodilator stress echo study. Eur Heart J 29, Suppl 1

    Google Scholar 

  31. Aoki M, Harada K, Tamura M, et al (2004) Posterior descending coronary artery flow reserve assessment by Doppler echocardiography in children with and without congenital heart defect: comparison with invasive technique. Pediatr Cardiol 25:647–53

    Article  PubMed  CAS  Google Scholar 

  32. Yock PG, Popp RL (1984) Non-invasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 70:657–662

    PubMed  CAS  Google Scholar 

  33. McQuillan BM, Picard MH, Leavitt M, et al (2001) Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation 104:2797–802

    Article  PubMed  CAS  Google Scholar 

  34. Bossone E, Bodini BD, Mazza A, et al (2005) Pulmonary arterial hypertension: the key role of echocardiography. Chest. 127:1836–43

    Article  PubMed  Google Scholar 

  35. Himelman RB, Stulbarg MS, Lee E, et al (1990) Noninvasive evaluation of pulmonary artery systolic pressures during dynamic exercise by saline-enhanced Doppler echocardiography. Am Heart J 119:685–8

    Article  PubMed  CAS  Google Scholar 

  36. Chan KL, Currie PJ, Seward JB, et al (1987) Comparison of three Doppler ultrasound methods in the prediction of pulmonary artery pressure. J Am Coll Cardiol 9:549–54

    Article  PubMed  CAS  Google Scholar 

  37. Dambrauskaite V, Delcroix M, Claus P, et al (2005) The evaluation of pulmonary hypertension using right ventricular myocardial isovolumic relaxation time. J Am Soc Echocardiogr 18:1113–20

    Article  PubMed  Google Scholar 

  38. Tramarin R, Torbicki A, Marchandise B, et al (1991) Doppler echocardiographic evaluation of pulmonary artery pressure in chronic obstructive pulmonary disease. A European multicentre study. Working Group on Noninvasive Evaluation of Pulmonary Artery Pressure. European Office of the World Health Organization, Copenhagen. Eur Heart J 12:103–11

    PubMed  CAS  Google Scholar 

  39. Masuyama T, Kodama K, Kitabatake A, et al (1986) Continuous-wave Doppler echocardio-graphic detection of pulmonary regurgitation and its application to noninvasive estimation of pulmonary artery pressure. Circulation 74:484–92

    PubMed  CAS  Google Scholar 

  40. Ristow B, Ali S, Ren X, et al (2007) Elevated pulmonary artery pressure by Doppler echocar-diography predicts hospitalization for heart failure and mortality in ambulatory stable coronary artery disease: the Heart and Soul Study. J Am Coll Cardiol 49:43–49

    Article  PubMed  Google Scholar 

  41. Abbas AE, Fortuin FD, Schiller NB, et al (2003) A simple method for non-invasive estimation of pulmonary vascular resistance. J Am Coll Cardiol 19:1021–1027

    Article  Google Scholar 

  42. Farzaneh-Far R, McKeown BH, Dang D, et al (2008) Accuracy of Doppler-estimated pulmonary vascular resistance in patients before liver transplantation. Am J Cardiol 101:259–62

    Article  PubMed  Google Scholar 

  43. Ulett KB, Marwick TH (2007) Incorporation of pulmonary vascular resistance measurement into standard echocardiography: implications for assessment of pulmonary hypertension. Echocardiography 24:1020–2

    Article  PubMed  Google Scholar 

  44. Hatano S, Strasser T (1975) World Health organization 1975 primary pulmonary hypertension. WHO, Geneva

    Google Scholar 

  45. Galie N, Torbicki A, Barst R et al (2004) Guidelines on diagnosis and treatment of pulmonary arterial hypertension. The task force on diagnosis and treatment of pulmonary arterial hypertension of the European society of cardiology. Eur Heart 25:2243–2278

    Article  Google Scholar 

  46. Schannwell CM, Steiner S, Strauer BE (2007) Diagnostics in pulmonary hypertension. J Physiol Pharmacol 58:591–602

    PubMed  Google Scholar 

  47. Himelman RB, Schiller NB (1992) Exercise Doppler: functional evaluation of right heart hemodynamics. Echocardiography 9:225–33

    Article  PubMed  CAS  Google Scholar 

  48. Bossone E, Rubenfire M, Bach DS, et al (1999) Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of pulmonary hypertension. J Am Coll Cardiol 33:1662–6

    Article  PubMed  CAS  Google Scholar 

  49. Collins N, Bastian B, Quiqueree L, et al (2006) Abnormal pulmonary vascular responses in patients registered with a systemic autoimmunity database: pulmonary hypertension assessment and screening evaluation using stress echocardiography (PHASE-I). Eur J Echocardiogr 7:439–46

    Article  PubMed  Google Scholar 

  50. Bidart CM, Abbas AE, Parish JM, et al (2007) The noninvasive evaluation of exercise-induced changes in pulmonary artery pressure and pulmonary vascular resistance. J Am Soc Echocar-diogr 20:270–5

    Article  Google Scholar 

  51. Janosi A, Apor P, Hankoczy J, et al (1988) Pulmonary artery pressure and oxygen consumption measurement during supine bicycle exercise. Chest 93:419–21

    Article  PubMed  CAS  Google Scholar 

  52. American College of Cardiology/American Heart Association Task Force on Practice Guidelines; Society of Cardiovascular Anesthesiologists; Society for Cardiovascular Angiography and Interventions; Society of Thoracic Surgeons, Bonow RO, Carabello BA, Kanu C, et al (2006) ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation. 114:e84–231

    Article  PubMed  Google Scholar 

  53. Kuecherer HF, Will M, da Silva KG (1996) Contrast enhanced Doppler ultrasound for non-invasive assessment of pulmonary artery pressure during exercise in patients with chronic congestive heart failure. Am J Cardiol 78:229–32

    Article  PubMed  CAS  Google Scholar 

  54. Tumminello G, Lancellotti P, Lempereur M, et al (2007) Determinants of pulmonary artery hypertension at rest and during exercise in patients with heart failure. Eur Heart J. 28:569–74

    Article  PubMed  Google Scholar 

  55. Alkotob ML, Soltani P, Sheatt MA, et al (2006) Reduced exercise capacity and stress-induced pulmonary hypertension in patients with scleroderma. Chest 130:176–81

    Article  PubMed  Google Scholar 

  56. Pignone A, Mori F, Pieri F, Oddo A, et al (2007) Exercise Doppler echocardiography identifies preclinic asymptomatic pulmonary hypertension in systemic sclerosis. Ann N Y Acad Sci 1108:291–304

    Article  PubMed  Google Scholar 

  57. Kasimir MT, Mereles D, Aigner C, et al. (2008) Assessment of pulmonary artery systolic pressures by stress Doppler echocardiography after bilateral lung transplantation. J Heart Lung Transplant. 27:66–71

    Article  PubMed  Google Scholar 

  58. Grünig E, Mereles D, Hildebrandt W, et al (2000) Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema. J Am Coll Cardiol 35:980–7

    Article  PubMed  Google Scholar 

  59. Grünig E, Janssen B, Mereles D, et al (2000) Abnormal pulmonary artery pressure response in asymptomatic carriers of primary pulmonary hypertension gene. Circulation 102:1145–50

    PubMed  Google Scholar 

  60. Grünig E, Dehnert C, Mereles D, et al (2005) Enhanced hypoxic pulmonary vasoconstric-tion in families of adults or children with idiopathic pulmonary arterial hypertension. Chest 128:630S–3

    Article  PubMed  Google Scholar 

  61. Olschewski H (2006) Current recommendations for the diagnosis and treatment of pulmonary hypertension. Dtsch Med Wochenschr 131:S334–7

    Article  PubMed  CAS  Google Scholar 

  62. Holmegren A, Jonsson B, Sjostarnd T (1960) Circulatory data in normal subjects at rest and during exercise in recumbent position, with special reference to the stroke volume at different work intensities. Acta Physiol Scand 49:343–346

    Article  Google Scholar 

  63. Granath A, Jonsson B, Strandell T (1964) Circulation in healthy old men studied by right heart catheterization at rest and during exercise in supine and sitting position. Acta Med Scand 176:425–446

    PubMed  CAS  Google Scholar 

  64. Ekelund LG, Holmgren A (1967) Central hemodynamics during exercise. Circ Res 30:133–143

    Google Scholar 

  65. Ellestad MH (1996) Cardiovascular and pulmonary responses to exercise. In: Ellestad MH (ed) Stress testing: principles and practice, 4th edn. Davis, Philadelphia, pp 11–41

    Google Scholar 

  66. Douglas PS, Khandheria B, Stainback R F, et al (2008) American College of Cardiology Foundation Appropriateness Criteria Task Force; American Society of Echocardiography; American College of Emergency Physicians; American Heart Association; American Society of Nuclear Cardiology; Society for Cardiovascular Angiography and Interventions; Society of Cardiovascular Computed Tomography; Society for Cardiovascular Magnetic Resonance. ACCF/ASE/ACEP/AHA/ASNC/SCAI/SCCT/SCMR 2008 appropriateness criteria for stress echocardiography: a report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, American Society of Echocardiography, American College of Emergency Physicians, American Heart Association, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance: endorsed by the Heart Rhythm Society and the Society of Critical Care Medicine. Circulation 117:1478–97

    Article  PubMed  Google Scholar 

  67. Picano E, Frassi F, Agricola E (2006) Ultrasound lung comets: a clinically useful sign of extravascular lung water. J Am Soc Echocardiogr 19:356–63

    Article  PubMed  Google Scholar 

  68. Jambrik Z, Monti S, Coppola V, et al (2004) Usefulness of ultrasound lung comets as a nonra-diologic sign of extravascular lung water. Am J Cardiol 93:1265–70

    Article  PubMed  Google Scholar 

  69. Gargani L, Lionetti V, Di Cristofano C, et al (2007) Early detection of acute lung injury uncoupled to hypoxemia in pigs using ultrasound lung comets. Crit Care Med 35:2769–74

    Article  PubMed  Google Scholar 

  70. Agricola E, Picano E, Oppizzi M, et al (2006) Assessment of stress-induced pulmonary interstitial edema by chest ultrasound during exercise echocardiography and its correlation with left ventricular function. J Am Soc Echocardiogr19:457–63

    Article  PubMed  Google Scholar 

  71. Fagenholz PJ, Gutman JA, Murray A F, et al (2007) Chest ultrasonography for the diagnosis and monitoring of high-altitude pulmonary edema. Chest 131:1013–8

    Article  PubMed  Google Scholar 

  72. Frassi F, **itore A, Cialoni D, et al (2008) Chest sonography detects lung water accumulation in healthy elite apnea divers. Eur J Echocardiogr 21:1150–55

    Google Scholar 

  73. Gargani L, Frassi F, Doveri M, et al (2009) Ultrasound lung comets in systemic sclerosis: a chest sonography hallmark of pulmonary interstitial fibrosis. Reumatology 49:210–213

    Google Scholar 

  74. Picano E (2003) Stress echocardiography: a historical perspective. Special article. Am J Med 114:126–30

    Article  PubMed  Google Scholar 

  75. Pellikka PA, Nagueh SF, Elhendy AA, et al, American Society of Echocardiography (2007) American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr 20:1021–41

    Article  PubMed  Google Scholar 

  76. MacNee W (1994) Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part One. Am J Respir Crit Care Med 150:833–852

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Picano, E., Grünig, E., Román, A.S., Damon, K., Schiller, N.B. (2009). Dynamic and Pharmacologic Right Heart Stress Echocardiography: Right Ventricular Function, Right Coronary Artery Flow, Pulmonary Pressure, and Alveolar–Capillary Membrane Testing in the Echocardiography Laboratory. In: Picano, E. (eds) Stress Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76466-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76466-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76465-6

  • Online ISBN: 978-3-540-76466-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation