Active Monte Carlo Localization in Outdoor Terrains Using Multi-level Surface Maps

  • Conference paper
Autonome Mobile Systeme 2007

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

In this paper we consider the problem of active mobile robot localization with range sensors in outdoor environments. In contrast to passive approaches our approach actively selects the orientation of the laser range finder to improve the localization results. It applies a particle filter to estimate the full sixdimensional state of the robot. To represent the environment we utilize multi-level surface maps which allow the robot to represent vertical structures and multiple levels. To efficiently calculate the optimal orientation for the range scanner, we apply a clustering operation on the particles and only evaluate potential orientations based on these clusters. Experimental results obtained with a mobile robot in an outdoor environment indicate that the active control of the range sensor leads to more efficient localization results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Kümmerle, R. Triebel, P. Pfaff, and W. Burgard. Monte carlo localization in outdoor terrains using multi-level surface maps. In Proc. of the International Conference on Field and Service Robotics (FSR), Chamonix, France, 2007.

    Google Scholar 

  2. R. Triebel, P. Pfaff, and W. Burgard. Multi level surface maps for outdoor terrain map** and loop closing. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2006.

    Google Scholar 

  3. J. Bares, M. Hebert, T. Kanade, E. Krotkov, T. Mitchell, R. Simmons, and W. R. L. Whittaker. Ambler: An autonomous rover for planetary exploration. IEEE Computer Society Press, 22(6): 18–22, 1989.

    Google Scholar 

  4. M. Hebert, C. Caillas, E. Krotkov, I.S. Kweon, and T. Kanade. Terrain map** for a roving planetary explorer. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages 997–1002, 1989.

    Google Scholar 

  5. S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury and; M. Herrb, and R. Chatila. Autonomous rover navigation on unknown terrains: Functions and integration. International Journal of Robotics Research, 21(10–11): 917–942, 2002.

    Google Scholar 

  6. C. Parra, R. Murrieta-Cid, M. Devy, and M. Briot. 3-d modelling and robot localization from visual and range data in natural scenes. In 1st International Conference on Computer Vision Systems (ICVS), number 1542 in LNCS, pages 450–468, 1999.

    Google Scholar 

  7. L. P. Kaelbling, A. R. Cassandra, and J. A. Kurien. Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Osaka, Japan, 1996.

    Google Scholar 

  8. S. Koenig and R. Simmons. Xavier: A robot navigation architecture based on partially observable markov decision process models. In D. Kortenkamp, R. Bonasso, and R. Murphy, editors, Artificial Intelligence Based Mobile Robotics: Case Studies of Successful Robot Systems, pages 91–122. MIT Press, 1998.

    Google Scholar 

  9. P. Jensfelt and S. Kristensen. Active global localisation for a mobile robot using multiple hypothesis tracking. IEEE Transactions on Robotics and Automation, 17(5): 748–760, October 2001.

    Google Scholar 

  10. A. Davison and N. Kita. 3d simultaneous localisation and map-building using active vision for a robot moving on undulating terrain. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Kauai. IEEE Computer Society Press, December 2001.

    Google Scholar 

  11. J. M. Porta, J. J. Verbeek, and B. J. A. Kröse. Active appearance-based robot localization using stereo vision. Auton. Robots, 18(l): 59–80, 2005.

    Article  Google Scholar 

  12. D. Fox, W. Burgard, and S. Thrun. Active markov localization for mobile robots. Journal of Robotics & Autonomous Systems, 25: 195–207, 1998.

    Article  Google Scholar 

  13. F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo localization for mobile robots. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 1999.

    Google Scholar 

  14. A. Doucet, N. de Freitas, and N. Gordan, editors. Sequential Monte-Carlo Methods in Practice. Springer Verlag, 2001.

    Google Scholar 

  15. L. J. Heyer, S. Kruglyak, and S. Yooseph. Exploring expression data: Identification and analysis of coexpressed genes. Genome Res., 9(11): 1106–1115, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kümmerle, R., Pfaff, P., Triebel, R., Burgard, W. (2007). Active Monte Carlo Localization in Outdoor Terrains Using Multi-level Surface Maps. In: Berns, K., Luksch, T. (eds) Autonome Mobile Systeme 2007. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74764-2_5

Download citation

Publish with us

Policies and ethics

Navigation