Texture Synthesis and Modification with a Patch-Valued Wavelet Transform

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

This paper models a texture as a 2D map** onto a nonlinear manifold representing the local structures of the image. This manifold is learned from the set of local patches from an exemplar texture. A multiscale decomposition of this manifold valued representation is computed that mimics the orthogonal wavelet transform. The key ingredient of this decomposition is a geometric association field that drives the computations along the manifold. Iterated predictions leads to the computation of details coefficients over the features manifold. The resulting transform is invertible, non-linear and represents efficiently the local geometric structures of the exemplar. The multiscale coefficients of this transform are used to perform analysis and synthesis of textures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Candès, E., Donoho, D.: New tight frames of curvelets and optimal representations of objects with piecewise c 2 singularities. Comm. Pure Appl. Math. 57(2), 219–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Donoho, D.L., Grimes, C.: Image manifolds isometric to euclidean space. J. Math. Imaging Computer Vision 23 (2005)

    Google Scholar 

  3. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV ’99: Proceedings of the International Conference on Computer Vision, vol. 2, p. 1033. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  4. Heeger, D.J., Bergen, J.R.: Pyramid-Based texture analysis/synthesis. In: Cook, R. (ed.) SIGGRAPH 95 Conference Proceedings, Aug. 1995. Annual Conference Series, pp. 229–238. Addison-Wesley, Reading (1995)

    Chapter  Google Scholar 

  5. Julesz, B.: Visual pattern discrimination. IRE Trans. Inform. Theory 8(2), 84–92 (1962)

    Article  Google Scholar 

  6. Le Pennec, E., Mallat, S.: Bandelet Image Approximation and Compression. SIAM Multiscale Modeling and Simulation, to appear (2005)

    Google Scholar 

  7. Lee, A.B., Pedersen, K.S., Mumford, D.: The nonlinear statistics of high-contrast patches in natural images. International Journal of Computer Vision 54(1-3), 83–103 (2003)

    Article  MATH  Google Scholar 

  8. Lefebvre, S., Hoppe, H.: Parallel controllable texture synthesis. ACM Trans. Graph. 24(3), 777–786 (2005), doi:10.1145/1073204.1073261

    Article  Google Scholar 

  9. Lefebvre, S., Hoppe, H.: Appearance-space texture synthesis. ACM Trans. Graph (2006)

    Google Scholar 

  10. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  11. Matusik, W., Zwicker, M., Durand, F.: Texture design using a simplicial complex of morphable textures. ACM Trans. Graph. 24(3), 787–794 (2005), doi:10.1145/1073204.1073262

    Article  Google Scholar 

  12. Mumford, D.: Elastica and computer vision. In: Bajaj, C.L. (ed.) Algebraic geometry and its applications, pp. 491–506 (1994)

    Google Scholar 

  13. Roweis, S., Saul, L.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  14. Szlam, A., Maggioni, M., Coifman, R.R.: A general framework for adaptive regularization based on diffusion processes on graphs. Yale technichal report (July 2006)

    Google Scholar 

  15. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  16. Ur-Raman, I., et al.: Multiscale representations of manifold-valued data. To appear in SIAM Multiscale Modeling and Simulation (2005)

    Google Scholar 

  17. Williams, L.R., Jacobs, D.W.: Stochastic completion fields: a neural model of illusory contour shape and salience. Neural Comput. 9(4), 837–858 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Peyré, G. (2007). Texture Synthesis and Modification with a Patch-Valued Wavelet Transform. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation