Super-Resolution Using Sub-band Constrained Total Variation

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

Super-resolution of a single image is a severely ill-posed problem in computer vision. It is possible to consider solving this problem by considering a total variation based regularization framework. The choice of total variation based regularization helps in formulating an edge preserving scheme for super-resolution. However, this scheme tends to result in a piece-wise constant resultant image. To address this issue, we extend the formulation by incorporating an appropriate sub-band constraint which ensures the preservation of textural details in trade off with noise present in the observation. The proposed framework is extensively evaluated and the experimental results for the same are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zitova, B., Flusser, J.: Image Registration Methods: A survey. Image and Vision Computing 21(11), 977–1000 (2003)

    Article  Google Scholar 

  2. Capel, D., Zisserman, A.: Computer vision applied to super resolution. IEEE Signal Processing Magazine 20(3), 75–86 (2003), http://www.robots.ox.ac.uk/~vgg

    Article  Google Scholar 

  3. Rajan, D., Chaudhuri, S., Joshi, M.V.: Multi-objective super resolution: Concepts and examples. IEEE Signal Processing Magazine 20(3), 49–61 (2003)

    Article  Google Scholar 

  4. Rajan, D., Chaudhuri, S.: Simultaneous estimation of super-resolved scene and depth map from low resolution defocused observations. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1102–1117 (2003)

    Article  Google Scholar 

  5. Joshi, M.V., Chaudhuri, S., Rajkiran, P.: Super-Resolution Imaging: Use of Zoom as a Cue. Image and Vision Computing 22(14), 1185–1196 (2004)

    Google Scholar 

  6. Joshi, M.V., Chaudhuri, S., Rajkiran, P.: A Learning Based Method for Image Super-Resolution from Zoomed Observations. IEEE Trans. Systems, Man & Cybernetics, Part-B 35(3), 527–537 (2005)

    Article  Google Scholar 

  7. Chan, T.F., et al.: Superresolution image reconstruction using fast inpainting algorithms. Technical report, University of California, Los Angeles (2006)

    Google Scholar 

  8. Farsiu, S., Elad, M., Milanfar, P.: A practical approach to super-resolution. In: Visual Communications and Image Processing, San Jose, USA, January 2006. Proc. of the SPIE, vol. 6077, pp. 24–38 (2006)

    Google Scholar 

  9. Farsiu, S., et al.: Advances and challenges in super-resolution. International Journal of Imaging Systems and Technology 14(2), 47–57 (2004)

    Article  Google Scholar 

  10. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. International Journal of Computer Vision 40(1), 25–47 (2000)

    Article  MATH  Google Scholar 

  11. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9), 1167–1183 (2002)

    Article  Google Scholar 

  12. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Transactions on Computer Graphics and Applications 22(2), 56–65 (2002)

    Article  Google Scholar 

  13. Malgouyres, F., Guichard, F.: Edge direction preserving image zooming: A mathematical and numerical analysis. SIAM Journal on Numerical Analysis 39(1), 1–37 (2002), citeseer.ist.psu.edu/malgouyres00edge.html

    Article  MathSciNet  Google Scholar 

  14. Guichard, F., Malgouyres, F.: Total variation based interpolation. In: Proceedings of the European Signal Processing Conference, vol. 3, Island of Rhodes, Greece, September 1998, pp. 1741–1744. Elsevier North-Holland, Inc., Amsterdam, The Netherlands (1998)

    Google Scholar 

  15. Aly, H., Dubois, E.: Image up-sampling using total-variation regularization. IEEE Transaction on Image Processing 14(10), 1646–1659 (2005)

    Article  MathSciNet  Google Scholar 

  16. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graphical Model and Image Processing 53(3), 231–239 (1991)

    Article  Google Scholar 

  17. Aly, H., Dubois, E.: Specification of the observation model for regularized image up-sampling. IEEE Transaction on Image Processing 14(5), 567–576 (2005)

    Article  MathSciNet  Google Scholar 

  18. Chaudhuri, S., Jiji, C.V., Neethu, P.: Alias-Free Interpolation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 255–266. Springer, Heidelberg (2006)

    Google Scholar 

  19. Coifman, R.R., Sowa, A.: Combining the calculus of variations and wavelets for image enhancement. Applied and Computational Harmonic Analysis 9, 1–18 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Malgouyres, F.: Minimizing the total variation under a general convex constraint for image restoration. IEEE Trans. on Image Processing 11(12), 1450–1456 (2002)

    Article  MathSciNet  Google Scholar 

  21. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear Total Variation Based Noise Removal Algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  22. Lertrattanapanich, S., Bose, N.K.: High resolution image formation from low resolution frames using delaunay triangulation. IEEE Transactions on Image Processing 11(12), 1427–1441 (2002)

    Article  MathSciNet  Google Scholar 

  23. Takeda, H., Farsiu, S., Milanfar, P.: Kernel Regression for Image Processing and Reconstruction. IEEE Transactions on Image Processing 16(2), 349–366 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Chatterjee, P., Namboodiri, V.P., Chaudhuri, S. (2007). Super-Resolution Using Sub-band Constrained Total Variation. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation