Fuzzy Region Competition: A Convex Two-Phase Segmentation Framework

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

We describe a novel framework for two-phase image segmentation, namely the Fuzzy Region Competition. The functional involved in several existing models related to the idea of Region Competition is extended by the introduction of a fuzzy membership function. The new problem is convex and the set of its global solutions turns out to be stable under thresholding, operation that also provides solutions to the corresponding classical formulations. The advantages are then shown in the piecewise-constant case. Finally, motivated by medical applications such as angiography, we derive a fast algorithm for segmenting images into two non-overlap** smooth regions. Compared to existing piecewise-smooth approaches, this last model has the unique advantage of featuring closed-form solutions for the approximation functions in each region based on normalized convolutions. Results are shown on synthetic 2D images and real 3D volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bresson, X., et al.: Global minimizers of the active contour/snake model. No CAM Report 0504, UCLA, Dept. of Mathematics (2005)

    Google Scholar 

  2. Bresson, X., et al.: Fast global minimization of the active contour/snake model. To appear in Journal of Mathematical Imaging and Vision (2006)

    Google Scholar 

  3. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1-2), 89–97 (2004)

    MathSciNet  Google Scholar 

  4. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. UCLA CAM Report 04-54 (2004)

    Google Scholar 

  5. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  6. Fleming, W., Rishel, R.: An integral formula for total gradient variation. Archiv Der Mathematik 11, 218–222 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jehan-Besson, S., Barlaud, M., Aubert, G.: Dream2s: Deformable regions driven by an eulerian accurate minimization method for image and video segmentation. Int. Journal of Computer Vision 53(1), 45–70 (2003)

    Article  Google Scholar 

  8. Knutsson, H., Westin, C.F.: Normalized and differential convolution: Methods for interpolation and filtering of incomplete and uncertain data. In: Proc. of Computer Vision and Pattern Recognition, New York City, USA, June 16-19 1993, pp. 515–523 (1993)

    Google Scholar 

  9. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. on Pure and Applied Mathematics 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on the hamilton-jacobi formulation. Journal of Computational Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Paragios, N., Deriche, N.: Geodesic active regions and level set methods for supervised texture segmentation. Int. Journal of Computer Vision 46(3), 223–247 (2002)

    Article  MATH  Google Scholar 

  12. Shen, J(J.): A stochastic-variational model for soft mumford-shah segmentation. International Journal of Biomedical Imaging 92329 (2006)

    Google Scholar 

  13. Tsai, A., Yezzi Jr., A., Willsky, A.S.: Curve evolution implementation of the mumford-shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. on Image Processing 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  14. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. Int. Journal of Computer Vision 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  15. Young, I., van Vliet, L.: Recursive implementation of the gaussian filter. Signal Processing 44, 139–151 (1995)

    Article  Google Scholar 

  16. Zhao, H.K., et al.: A variational level set approach to multiphase motion. Journal of Computational Physics 127, 179–195 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and bayes/mdl for multiband image segmentation. IEEE Trans. On Pattern Analysis and Machine Intelligence 18(9), 884–900 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Mory, B., Ardon, R. (2007). Fuzzy Region Competition: A Convex Two-Phase Segmentation Framework. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation