Co-operation in the Brain in Higher Cognitive Functioning

  • Conference paper
Unifying Themes in Complex Systems

Abstract

We have analyzed the interdependencies between different regions of human brain during processing of different kinds of music by using multivariate EEG signals. In this study, a recent index, called similarity index, SI was used, which unlike the traditional linear measures is able to provide information about the direction of the interdependency. Relatively active and passive regions of the brain were highlighted, where the measure of the activity was reflected by the excited degrees of freedom at a typical length scale. The SIs during each task were compared statistically and significant changes (p ≤ 0.05) were depicted in schematic maps of the brain. A topographical representation of the S.I. showed differences in the connectivity while listening to different pieces of music.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. Shaw, G.L., Kee** Mozart in Mind (Academic Press, San Diego, 2000).

    Google Scholar 

  2. Sergent, J. (1993) Hum. Brain. Mapp. 1, pp. 20–38.

    Article  Google Scholar 

  3. Bradshaw, J.L., & Nettleton, N.C. (1981) Behav. Brain. Sci. 4, pp. 51–91.

    Article  Google Scholar 

  4. Chauvel, C.-L., Peretz, I., Babar, M., Laguitton, V., & Chauvel, P. (1998) Brain 121, pp. 1853–1867.

    Article  Google Scholar 

  5. Tononi, G., & Edelman, M. (1998) Science 282, pp. 1846–1851.

    Article  Google Scholar 

  6. Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G.L., & von Stein, A. (1998) Proc. Natl. Acad. Sci. USA 95, pp. 7092–7096.

    Article  ADS  Google Scholar 

  7. Priestly, M.B. (1981) Spectral Analysis and Time Series (Academic Press, London).

    Google Scholar 

  8. Bullock, T.H., & McClune, M.C. (1989) Electroencephal. Clin. Neuro-physiol. 73, pp. 479–498.

    Article  Google Scholar 

  9. Petsche, H., & Etlinger, S.C. (1998) EEG and Thinking (Verlag der Österreichschen Akademie der Wissenschaften, Wien, 1998).

    Google Scholar 

  10. Lopes da Silva, F.H., Piijn, J.P., & Boei**ga, P. (1989) Brain Topogr. 2, pp. 9–18.

    Article  Google Scholar 

  11. Eckmann, J.P., & Ruelle, D. (1985) Rev. Mod. Phys. 57, pp. 617–656.

    Article  ADS  MathSciNet  Google Scholar 

  12. Pecora, L.M., & Carroll, T.L. (1990) Phys. Rev. Lett. 64, 821–823.

    Article  ADS  MathSciNet  Google Scholar 

  13. Rulkov, N., Suschik, M.M., Tsimiring, L.S., & Abarbanel, H.D.I. (1995) Phys. Rev. E 51, 980–994.

    Article  ADS  Google Scholar 

  14. Arnhold, J., Grassberger, P., Lehnertz, K., & Elger, C.E. (1999) Physica D 134, 419–430.

    Article  MATH  ADS  Google Scholar 

  15. Sauer T., Yorke, J. A., & Casdagli, M. (1991) J. Stat. Phys. 65, 579–616.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Bhattacharya J., Pereda, E., Petsche, H. (2001) J. Neurosci. 21, 6329–6337.

    Google Scholar 

  17. Schiff, S.J., So, P., Chang, T., Burke, R.E., & Sauer, T. (1996) Phys. Rev. E 54, 6708–6724.

    Article  ADS  Google Scholar 

  18. Van Quyen, M.L., martinerie, J., Adam, C., & Varela, F.J. (1999) Physica D 127, 250–266.

    Article  ADS  Google Scholar 

  19. Kantz, H., & Schreiber, T. (1997) Nonlinear Time Series Analysis (Cambridge University Press, UK).

    MATH  Google Scholar 

  20. Casdagli, M., Eubank, S., Farmer, JD., & Gibson, J. (1991) Physica D 51, pp. 52–98.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Theiler, J. (1986) Phys. Rev. A 34, pp. 2427–2432.

    Article  ADS  Google Scholar 

  22. Abeles, M. (1991) Corticonics-Neural Circuits of the Cerebral Cortex (Cambridge University Press, Cambridge).

    Google Scholar 

  23. Badii, R. et al. (1988) Phys. Rev. Lett. 60, pp. 979–982.

    Article  ADS  Google Scholar 

  24. Bullock, T. H. (1997) Proc. Natl. Acad. Sci. USA 94, pp. 1–6.

    Article  ADS  Google Scholar 

  25. Prichard, D. & Theiler, J. (1994), Phys. Rev. Letts. 73, pp. 951–954.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 NECSI Cambridge, Massachusetts

About this paper

Cite this paper

Bhattacharya, J., Petsche, H., Pereda, E. (2006). Co-operation in the Brain in Higher Cognitive Functioning. In: Minai, A.A., Bar-Yam, Y. (eds) Unifying Themes in Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35866-4_10

Download citation

Publish with us

Policies and ethics

Navigation