Evolutionary Optimisation of Neural Network Models for Fish Collective Behaviours in Mixed Groups of Robots and Zebrafish

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Included in the following conference series:

Abstract

Animal and robot social interactions are interesting both for ethological studies and robotics. On the one hand, the robots can be tools and models to analyse animal collective behaviours, on the other hand the robots and their artificial intelligence are directly confronted and compared to the natural animal collective intelligence. The first step is to design robots and their behavioural controllers that are capable of socially interact with animals. Designing such behavioural bio-mimetic controllers remains an important challenge as they have to reproduce the animal behaviours and have to be calibrated on experimental data. Most animal collective behavioural models are designed by modellers based on experimental data. This process is long and costly because it is difficult to identify the relevant behavioural features that are then used as a priori knowledge in model building. Here, we want to model the fish individual and collective behaviours in order to develop robot controllers. We explore the use of optimised black-box models based on artificial neural networks (ANN) to model fish behaviours. While the ANN may not be biomimetic but rather bio-inspired, they can be used to link perception to motor responses. These models are designed to be implementable as robot controllers to form mixed-groups of fish and robots, using few a priori knowledge of the fish behaviours. We present a methodology with multilayer perceptron or echo state networks that are optimised through evolutionary algorithms to model accurately the fish individual and collective behaviours in a bounded rectangular arena. We assess the biomimetism of the generated models and compare them to the fish experimental behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1769–1776. IEEE (2005)

    Google Scholar 

  2. Bonnet, F., Cazenille, L., Gribovskiy, A., Halloy, J., Mondada, F.: Multi-robots control and tracking framework for bio-hybrid systems with closed-loop interaction. In: IEEE International Conference on Robotics and Automation (ICRA). IEEE (2017)

    Google Scholar 

  3. Bonnet, F., Cazenille, L., Seguret, A., Gribovskiy, A., Collignon, B., Halloy, J., Mondada, F.: Design of a modular robotic system that mimics small fish locomotion and body movements for ethological studies. Int. J. Adv. Robot. Syst. 14(3) (2017). https://doi.org/10.1177/1729881417706628

    Article  Google Scholar 

  4. Bonnet, F., Gribovskiy, A., Halloy, J., Mondada, F.: Closed-loop interactions between a shoal of zebrafish and a group of robotic fish in a circular corridor. Swarm Intell. 1–18 (2018)

    Google Scholar 

  5. Calovi, D.S., Litchinko, A., Lecheval, V., Lopez, U., Escudero, A.P., Chaté, H., Sire, C., Theraulaz, G.: Disentangling and modeling interactions in fish with burst-and-coast swimming reveal distinct alignment and attraction behaviors. PLoS Comput. Biol. 14(1), e1005933 (2018)

    Article  Google Scholar 

  6. Cazenille, L., Bredeche, N., Halloy, J.: Automated optimisation of multi-level models of collective behaviour in a mixed society of animals and robots. ar**v preprint ar**v:1602.05830 (2016)

  7. Cazenille, L., et al.: Automated calibration of a biomimetic space-dependent model for zebrafish and robot collective behaviour in a structured environment. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P.F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 107–118. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_10

    Chapter  Google Scholar 

  8. Cazenille, L., Collignon, B., Bonnet, F., Gribovskiy, A., Mondada, F., Bredeche, N., Halloy, J.: How mimetic should a robotic fish be to socially integrate into zebrafish groups? Bioinspiration Biomim. (2017)

    Google Scholar 

  9. Collignon, B., Séguret, A., Halloy, J.: A stochastic vision-based model inspired by zebrafish collective behaviour in heterogeneous environments. R. Soc. Open Sci. 3(1) (2016). https://doi.org/10.1098/rsos.150473

    Article  MathSciNet  Google Scholar 

  10. Collignon, B., Séguret, A., Chemtob, Y., Cazenille, L., Halloy, J.: Collective departures in zebrafish: profiling the initiators. ar**v preprint ar**v:1701.03611 (2017)

  11. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2(4), 303–314 (1989)

    Article  MathSciNet  Google Scholar 

  12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  13. Deutsch, A., Theraulaz, G., Vicsek, T.: Collective motion in biological systems. Interface Focus 2(6), 689 (2012)

    Article  Google Scholar 

  14. Deza, M., Deza, E.: Dictionary of Distances. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  15. Doncieux, S., Mouret, J.B.: Beyond black-box optimization: a review of selective pressures for evolutionary robotics. Evol. Intell. 7(2), 71–93 (2014)

    Article  Google Scholar 

  16. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., Said, I., Durier, V., Canonge, S., Amé, J.: Social integration of robots into groups of cockroaches to control self-organized choices. Science 318(5853), 1155–1158 (2007)

    Article  Google Scholar 

  18. Herbert-Read, J.E., Romenskyy, M., Sumpter, D.J.: A turing test for collective motion. Biol. Lett. 11(12), 20150674 (2015)

    Article  Google Scholar 

  19. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Performance comparison of NSGA-II and NSGA-III on various many-objective test problems. In: IEEE Congress on Evolutionary Computation (CEC), pp. 3045–3052. IEEE (2016)

    Google Scholar 

  20. Jaeger, H.: Echo state network. Scholarpedia 2(9), 2330 (2007)

    Article  Google Scholar 

  21. Jiang, F., Berry, H., Schoenauer, M.: Supervised and evolutionary learning of echo state networks. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 215–224. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_22

    Chapter  Google Scholar 

  22. King, S.Y., Hwang, J.N.: Neural network architectures for robotic applications. IEEE Trans. Robot. Autom. 5(5), 641–657 (1989)

    Article  Google Scholar 

  23. Mondada, F., Halloy, J., Martinoli, A., Correll, N., Gribovskiy, A., Sempo, G., Siegwart, R., Deneubourg, J.: A general methodology for the control of mixed natural-artificial societies. In: Kernbach, S. (ed.) Handbook of Collective Robotics: Fundamentals and Challenges, pp. 547–585. Pan Stanford, Singapore (2013). Chapter 15

    Chapter  Google Scholar 

  24. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)

    Article  Google Scholar 

  25. Norgaard, M., Ravn, O., Poulsen, N., Hansen, L.: Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook. Advanced Textbooks in Control and Signal Processing. Springer, Berlin (2000)

    Book  Google Scholar 

  26. Polydoros, A., Nalpantidis, L., Krüger, V.: Advantages and limitations of reservoir computing on model learning for robot control. In: IROS Workshop on Machine Learning in Planning and Control of Robot Motion, Hamburg (2015)

    Google Scholar 

  27. Salimans, T., Ho, J., Chen, X., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. ar**v preprint ar**v:1703.03864 (2017)

  28. Séguret, A., Collignon, B., Cazenille, L., Chemtob, Y., Halloy, J.: Loose social organisation of AB strain zebrafish groups in a two-patch environment. ar**v preprint ar**v:1701.02572 (2017)

  29. Sumpter, D.J.T., Szorkovszky, A., Kotrschal, A., Kolm, N., Herbert-Read, J.E.: Using activity and sociability to characterize collective motion. Philos. Trans. R. Soc. B 373(1746) (2018). https://doi.org/10.1098/rstb.2017.0015

    Article  Google Scholar 

  30. Sumpter, D.J., Mann, R.P., Perna, A.: The modelling cycle for collective animal behaviour. Interface Focus 2(6), 764–773 (2012)

    Article  Google Scholar 

  31. Szubert, M., Kodali, A., Ganguly, S., Das, K., Bongard, J.C.: Reducing antagonism between behavioral diversity and fitness in semantic genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 797–804. ACM (2016)

    Google Scholar 

  32. Tunstrøm, K., Katz, Y., Ioannou, C.C., Huepe, C., Lutz, M.J., Couzin, I.D.: Collective states, multistability and transitional behavior in schooling fish. PLoS Comput. Biol. 9(2), e1002915 (2013)

    Article  MathSciNet  Google Scholar 

  33. Yuan, Y., Xu, H., Wang, B.: An improved NSGA-III procedure for evolutionary many-objective optimization. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 661–668. ACM (2014)

    Google Scholar 

Download references

Acknowledgement

This work was funded by EU-ICT project ‘ASSISIbf’, no. 601074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Cazenille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cazenille, L., Bredeche, N., Halloy, J. (2018). Evolutionary Optimisation of Neural Network Models for Fish Collective Behaviours in Mixed Groups of Robots and Zebrafish. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation