Molecular Mechanisms of Mechanosensing and Mechanotransduction

  • Chapter
  • First Online:
Plant Biomechanics

Abstract

Mechanical stimuli, such as touch, bending, gravity, and wounding, influence plant growth and development through the activation of intracellular signaling pathways and gene expression. Therefore, mechanosensing and mechanotransduction are of vital importance and have been attracting the attention of many plant scientists for nearly 150 years. Based on recent molecular and cellular approaches, candidates for mechanosensors have been discovered. These include mechanosensitive (MS) channels, such as MscS-like (MSL) proteins, mid1-complementing activities (MCAs), and reduced hyperosmolality-induced [Ca2+]i increase 1 (OSCA1), which generate intracellular ionic signals and receptor-like kinases that trigger the activation of regulatory proteins or enzymes, including Ca2+-binding proteins, protein kinases, protein phosphatases, and transcription factors. Other possible groups of mechanosensors are intracellular filamentous structures in the cytoskeleton, such as microtubules and actin filaments, which may directly act as sensors for the deformation of intracellular structures. In this chapter, we discuss the mechanisms by which plants sense and respond to mechanical stimuli by focusing on mechanosensors along with their downstream signaling molecules, such as auxin and reactive oxygen species (ROS).

M. Toyota and T. Furuichi contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CBLs:

Calcineurin B-like proteins

CICR:

Ca2+-induced Ca2+ release

CIPKs:

CBL-interacting protein kinases

FtsZ:

Filamentous temperature-sensitive Z

GLR:

Glutamate receptor-like channels

InsP3:

Inositol 1,4,5-trisphosphate

MCA1:

mid1-complementing activity 1

MCAs:

mid1-complementing activities

MS:

Mechanosensitive

MscL:

Mechanosensitive channel of large conductance

MscS:

Mechanosensitive channel of small conductance

MSL:

MscS-like

OSCA1:

Reduced hyperosmolality-induced [Ca2+]i increase 1

RAL:

Rapid alkalinization factor

ROS:

Reactive oxygen species

SA:

Stretch-activated

TM:

Transmembrane

TPC1:

Two-pore channel 1

References

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY et al (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Anishkin A, Loukin SH, Teng J, Kung C (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci USA 111:7898–7905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515

    Article  PubMed  CAS  Google Scholar 

  • Asai N, Nishioka T, Takabayashi J, Furuichi T (2009) Plant volatiles regulate the activities of Ca2+-permeable channels and promote cytoplasmic calcium transients in Arabidopsis leaf cells. Plant Signal Behav 4:294–300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI, Wilson JE, Cork A, Williamson RE (1994) Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol. Plant Cell Physiol 35:935–942

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1997) The AM and FM of calcium signalling. Nature 386:759–760

    Article  CAS  PubMed  Google Scholar 

  • Blancaflor EB, Hasenstein KH (1993) Organization of cortical microtubules in graviresponding maize roots. Planta 191:231–237

    PubMed  CAS  Google Scholar 

  • Booth IR, Blount P (2012) The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves. J Bacteriol 194:4802–4809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowman CL, Gottlieb PA, Suchyna TM, Murphy YK, Sachs F (2007) Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. Toxicon 49:249–270

    Article  PubMed  CAS  Google Scholar 

  • Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364

    Article  PubMed  CAS  Google Scholar 

  • Brohawn SG (2015) How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann NY Acad Sci 1352:20–32

    Article  PubMed  CAS  Google Scholar 

  • Burian A, Ludynia M, Uyttewaal M, Traas J, Boudaoud A, Hamant O et al (2013) A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem. J Exp Bot 64:5753–5767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Simasko SM, Niggel J, Sigurdson WJ, Sachs F (1996) Ca2+ uptake in GH3 cells during hypotonic swelling: the sensory role of stretch-activated ion channels. Am J Physiol 270:C1790–C1798

    Article  PubMed  CAS  Google Scholar 

  • Ciesielski T (1871) In Abwärtskrümmung der Wurzel. Inaug Dissert, Breslau

    Google Scholar 

  • Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143–153

    Article  PubMed  CAS  Google Scholar 

  • Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darwin C (1880) The power of movement in plants. John Murray, London

    Google Scholar 

  • Darwin C (1888) The movements and habits of climbing plants. John Murray, London

    Google Scholar 

  • Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, Bennett M et al (2011) Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol 156:1364–1374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110

    Article  PubMed  CAS  Google Scholar 

  • Dutta R, Robinson KR (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol 135:1398–1406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evans MJ, Choi WG, Gilroy S, Morris RJ (2016) A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiol 171:1771–1784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falke LC, Edwards KL, Pickard BG, Misler S (1988) A stretch-activated anion channel in tobacco protoplasts. FEBS Lett 237:141–144

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Gasperini D, Acosta IF (2014) The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding. New Phytol 204:282–288

    Article  PubMed  CAS  Google Scholar 

  • Fischer K, Schopfer P (1997) Interaction of auxin, light, and mechanical stress in orienting microtubules in relation to tropic curvature in the epidermis of maize coleoptiles. Protoplasma 196:108–116

    Article  CAS  Google Scholar 

  • Furuichi T, Lida H, Sokabe M, Tatsumi H (2012) Expression of arabidopsis MCA1 enhanced mechanosensitive channel activity in the Xenopus laevis oocyte plasma membrane. Plant Signal Behav 7:1022–1026

    Article  CAS  Google Scholar 

  • Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P et al (2015) Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527:64–69

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR et al (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630

    Article  PubMed  CAS  Google Scholar 

  • Groover A (2016) Gravitropisms and reaction woods of forest trees—evolution, functions and mechanisms. New Phytol 211:790–802

    Article  PubMed  Google Scholar 

  • Guo Y, Halfter U, Ishitani M, Zhu JK (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13:1383–1400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11:797–806

    Article  PubMed  CAS  Google Scholar 

  • Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P et al (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655

    Article  PubMed  CAS  Google Scholar 

  • Hamant O, Moulia B (2016) How do plants read their own shapes? New Phytol 212:333–337

    Article  PubMed  CAS  Google Scholar 

  • Hamilton ES, Jensen GS, Maksaev G, Katims A, Sherp AM, Haswell ES (2015) Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350:438–441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haswell ES, Meyerowitz EM (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16:1–11

    Article  PubMed  CAS  Google Scholar 

  • Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18:730–734

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa K, Tatsumi H, Sokabe M (2008) Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci 121:496–503

    Article  PubMed  CAS  Google Scholar 

  • Himmelspach R, Wymer CL, Lloyd CW, Nick P (1999) Gravity-induced reorientation of cortical microtubules observed in vivo. Plant J 18:449–453

    Article  PubMed  CAS  Google Scholar 

  • Hoson T, Soga K (2003) New aspects of gravity responses in plant cells. Int Rev Cytol 229:209–244

    Article  PubMed  CAS  Google Scholar 

  • Hou G, Kramer VL, Wang YS, Chen R, Perbal G, Gilroy S et al (2004) The promotion of gravitropism in Arabidopsis roots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. Plant J 39:113–125

    Article  PubMed  CAS  Google Scholar 

  • Hou G, Mohamalawari DR, Blancaflor EB (2003) Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton. Plant Physiol 131:1360–1373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iida H (2014) Mugifumi, a beneficial farm work of adding mechanical stress by treading to wheat and barley seedlings. Front Plant Sci 5:453

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikushima T, Shimmen T (2005) Mechano-sensitive orientation of cortical microtubules during gravitropism in azuki bean epicotyls. J Plant Res 118:19–26

    Article  PubMed  Google Scholar 

  • Jeandroz S, Lamotte O, Astier J, Rasul S, Trapet P, Besson-Bard A et al (2013) There’s more to the picture than meets the eye: nitric oxide cross talk with Ca2+ signaling. Plant Physiol 163:459–470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamano S, Kume S, Iida K, Lei KJ, Nakano M, Nakayama Y et al (2015) Transmembrane topologies of Ca2+-permeable mechanosensitive channels MCA1 and MCA2 in Arabidopsis thaliana. J Biol Chem 290:30901–30909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiep V, Vadassery J, Lattke J, Maass JP, Boland W, Peiter E et al (2015) Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytol 207:996–1004

    Article  PubMed  CAS  Google Scholar 

  • Kim BG, Waadt R, Cheong YH, Pandey GK, Dominguez-Solis JR, Schultke S et al (2007) The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52:473–484

    Article  PubMed  CAS  Google Scholar 

  • Kloda A, Martinac B (2002) Common evolutionary origins of mechanosensitive ion channels in Archaea, Bacteria and cell-walled Eukarya. Archaea 1:35–44

    Article  PubMed  CAS  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    Article  PubMed  CAS  Google Scholar 

  • Knight MR, Smith SM, Trewavas AJ (1992) Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci USA 89:4967–4971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krieg M, Dunn AR, Goodman MB (2015) Mechanical systems biology of C. elegans touch sensation. BioEssays 37:335–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurusu T, Kuchitsu K, Nakano M, Nakayama Y, Iida H (2013) Plant mechanosensing and Ca2+ transport. Trends Plant Sci 18:227–233

    Article  PubMed  CAS  Google Scholar 

  • Kurusu T, Iida H, Kuchitsu K (2012a) Roles of a putative mechanosensitive plasma membrane Ca2+-permeable channel OsMCA1 in generation of reactive oxygen species and hypo-osmotic signaling in rice. Plant Signal Behav 7:796–798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurusu T, Nishikawa D, Yamazaki Y, Gotoh M, Nakano M, Hamada H et al (2012b) Plasma membrane protein OsMCA1 is involved in regulation of hypo-osmotic shock-induced Ca2+ influx and modulates generation of reactive oxygen species in cultured rice cells. BMC Plant Biol 12:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurusu T, Yamanaka T, Nakano M, Takiguchi A, Ogasawara Y, Hayashi T et al (2012c) Involvement of the putative Ca2+-permeable mechanosensitive channels, NtMCA1 and NtMCA2, in Ca2+ uptake, Ca2+-dependent cell proliferation and mechanical stress-induced gene expression in tobacco (Nicotiana tabacum) BY-2 cells. J Plant Res 125:555–568

    Article  PubMed  CAS  Google Scholar 

  • Laluk K, Prasad KV, Savchenko T, Celesnik H, Dehesh K, Levy M et al (2012) The calmodulin-binding transcription factor SIGNAL RESPONSIVE1 is a novel regulator of glucosinolate metabolism and herbivory tolerance in Arabidopsis. Plant Cell Physiol 53:2008–2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee CP, Maksaev G, Jensen GS, Murcha MW, Wilson ME, Fricker M et al (2016) MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress. Plant J 88:809–825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Yuan F, Wen Z, Li Y, Wang F, Zhu T et al (2015) Genome-wide survey and expression analysis of the OSCA gene family in rice. BMC Plant Biol 15:261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z, Cheng Q, Sun Y, Dai H, Song G, Guo Z et al (2015) A SNP in OsMCA1 responding for a plant architecture defect by deactivation of bioactive GA in rice. Plant Mol Biol 87:17–30

    Article  PubMed  CAS  Google Scholar 

  • Maksaev G, Haswell ES (2012) MscS-Like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions. Proc Natl Acad Sci USA 109:19015–19020

    Article  PubMed  PubMed Central  Google Scholar 

  • Maple J, Chua NH, Moller SG (2002) The topological specificity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis. Plant J 31:269–277

    Article  PubMed  CAS  Google Scholar 

  • Messerli MA, Danuser G, Robinson KR (1999) Pulsatile influxes of H+, K+ and Ca2+ lag growth pulses of Lilium longiflorum pollen tubes. J Cell Sci 112:1497–1509

    PubMed  CAS  Google Scholar 

  • Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S (2009) Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21:2341–2356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moulia B, Coutand C, Julien JL (2015) Mechanosensitive control of plant growth: bearing the load, sensing, transducing, and responding. Front Plant Sci 6:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Mousavi SA, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500:422–426

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T et al (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura M, Toyota M, Tasaka M, Morita MT (2011) An Arabidopsis E3 Ligase, SHOOT GRAVITROPISM9, Modulates the Interaction between Statoliths and F-Actin in Gravity Sensing. Plant Cell 23:1830–1848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakano M, Iida K, Nyunoya H, Iida H (2011) Determination of structural regions important for Ca(2+) uptake activity in Arabidopsis MCA1 and MCA2 expressed in yeast. Plant Cell Physiol 52:1915–1930

    Article  PubMed  CAS  Google Scholar 

  • Nakayama Y, Fujiu K, Sokabe M, Yoshimura K (2007) Molecular and electrophysiological characterization of a mechanosensitive channel expressed in the chloroplasts of Chlamydomonas. Proc Natl Acad Sci USA 104:5883–5888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nick P, Bergfeld R, Schafer E, Schopfer P (1990) Unilateral reorientation of microtubules at the outer epidermal wall during photo- and gravitropic curvature of maize coleoptiles and sunflower hypocotyls. Planta 181:162–168

    Article  PubMed  CAS  Google Scholar 

  • Palmieri M, Kiss JZ (2005) Disruption of the F-actin cytoskeleton limits statolith movement in Arabidopsis hypocotyls. J Exp Bot 56:2539–2550

    Article  PubMed  CAS  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  PubMed  CAS  Google Scholar 

  • Perera IY, Hung CY, Brady S, Muday GK, Boss WF (2006) A universal role for inositol 1,4,5-trisphosphate-mediated signaling in plant gravitropism. Plant Physiol 140:746–760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the earth’s gravitational field induces cytosolic calcium transients. Plant Physiol 129:786–796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rigo G, Ayaydin F, Tietz O, Zsigmond L, Kovacs H, Pay A et al (2013) Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell 25:1592–1608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson S, Burian A, Couturier E, Landrein B, Louveaux M, Neumann ED et al (2013) Mechanical control of morphogenesis at the shoot apex. J Exp Bot 64:4729–4744

    Article  PubMed  CAS  Google Scholar 

  • Rosa M, Abraham-Juarez MJ, Lewis MW, Fonseca JP, Tian W, Ramirez V et al (2017) The Maize MID-COMPLEMENTING ACTIVITY homolog CELL NUMBER REGULATOR13/NARROW ODD DWARF coordinates organ growth and tissue patterning. Plant Cell 29:474–490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shigematsu H, Iida K, Nakano M, Chaudhuri P, Iida H, Nagayama K (2014) Structural characterization of the mechanosensitive channel candidate MCA2 from Arabidopsis thaliana. PLoS ONE 9:e87724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shih HW, Miller ND, Dai C, Spalding EP, Monshausen GB (2014) The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr Biol 24:1887–1892

    Article  PubMed  CAS  Google Scholar 

  • Stanković B, Davies E (1997) Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta 202:402–406

    Article  Google Scholar 

  • Stanković B, Davies E (1998) The wound response in tomato involves rapid growth and electrical responses, systemically up-regulated transcription of proteinase inhibitor and calmodulin and down-regulated translation. Plant Cell Physiol 39:268–274

    Article  Google Scholar 

  • Steinhorst L, Kudla J (2013) Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol 163:471–485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF et al (2000) Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 115:583–598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taiz L (1984) Plant cell expansion: regulation of cell wall mechanical properties. Annu Rev Plant Physiol 35:585–657

    Article  CAS  Google Scholar 

  • Takemura K, Kamachi H, Kume A, Fujita T, Karahara I, Hanba YT (2017) A hypergravity environment increases chloroplast size, photosynthesis, and plant growth in the moss Physcomitrella patens. J Plant Res 130:181–192

    Article  PubMed  CAS  Google Scholar 

  • Teng J, Loukin S, Anishkin A, Kung C (2015) The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Arch 467:27–37

    Article  PubMed  CAS  Google Scholar 

  • Toyota M, Furuichi T, Tatsumi H, Sokabe M (2007) Hypergravity stimulation induces changes in intracellular calcium concentration in Arabidopsis seedlings. Adv Space Res 39:1190–1197

    Article  CAS  Google Scholar 

  • Toyota M, Furuichi T, Tatsumi H, Sokabe M (2008a) Critical consideration on the relationship between auxin transport and calcium transients in gravity perception of Arabidopsis seedlings. Plant Signal Behav 3:521–524

    Article  PubMed  PubMed Central  Google Scholar 

  • Toyota M, Furuichi T, Tatsumi H, Sokabe M (2008b) Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol 146:505–514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toyota M, Furuichi T, Sokabe M, Tatsumi H (2013) Analyses of a gravistimulation-specific Ca2+ signature in Arabidopsis using parabolic flights. Plant Physiol 163:543–554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toyota M, Gilroy S (2013) Gravitropism and mechanical signaling in plants. Am J Bot 100:111–125

    Article  PubMed  CAS  Google Scholar 

  • Toyota M, Ikeda N, Tasaka M, Morita MT (2014) Centrifuge microscopy to analyze the sedimentary movements of amyloplasts. Bio-protocol 4:e1229

    Article  Google Scholar 

  • Veley KM, Marshburn S, Clure CE, Haswell ES (2012) Mechanosensitive channels protect plastids from hypoosmotic stress during normal plant growth. Curr Biol 22:408–413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volkers L, Mechioukhi Y, Coste B (2015) Piezo channels: from structure to function. Pflugers Arch 467:95–99

    Article  PubMed  CAS  Google Scholar 

  • Weinl S, Kudla J (2009) The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol 184:517–528

    Article  PubMed  CAS  Google Scholar 

  • Wildon D, Thain J, Minchin P, Gubb I, Reilly A, Skipper Y et al (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    Article  CAS  Google Scholar 

  • Wilson ME, Jensen GS, Haswell ES (2011) Two mechanosensitive channel homologs influence division ring placement in Arabidopsis chloroplasts. Plant Cell 23:2939–2949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson ME, Maksaev G, Haswell ES (2013) MscS-like mechanosensitive channels in plants and microbes. Biochemistry 52:5708–5722

    Article  PubMed  CAS  Google Scholar 

  • Wormit A, Butt SM, Chairam I, McKenna JF, Nunes-Nesi A, Kjaer L et al (2012) Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition. Plant Physiol 159:105–117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamanaka T, Nakagawa Y, Mori K, Nakano M, Imamura T, Kataoka H et al (2010) MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlap** roles in Arabidopsis. Plant Physiol 152:1284–1296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang H, **e S, Wang L, **g S, Zhu X, Li X et al (2011) Identification of up-regulated genes in tea leaves under mild infestation of green leafhopper. Sci Hortic 130:476–481

    Article  CAS  Google Scholar 

  • Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C et al (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–371

    Article  PubMed  CAS  Google Scholar 

  • Zandomeni K, Schopfer P (1994) Mechanosensory microtubule reorientation in the epidermis of maize coleoptiles subjected to bending stress. Protoplasma 182:96–101

    Article  CAS  PubMed  Google Scholar 

  • Zebelo SA, Maffei ME (2015) Role of early signalling events in plant-insect interactions. J Exp Bot 66:435–448

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Iida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toyota, M., Furuichi, T., Iida, H. (2018). Molecular Mechanisms of Mechanosensing and Mechanotransduction. In: Geitmann, A., Gril, J. (eds) Plant Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-79099-2_17

Download citation

Publish with us

Policies and ethics

Navigation