Feature Selection for Detecting Gene-Gene Interactions in Genome-Wide Association Studies

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10784))

Abstract

Disease association studies aim at finding the genetic variations underlying complex human diseases in order to better understand the etiology of the disease and to provide better diagnoses, treatment, and even prevention. The non-linear interactions among multiple genetic factors play an important role in finding those genetic variations, but have not always been taken fully into account. This is due to the fact that searching combinations of interacting genetic factors becomes inhibitive as its complexity grows exponentially with the size of data. It is especially challenging for genome-wide association studies (GWAS) where typically more than a million single-nucleotide polymorphisms (SNPs) are under consideration. Dimensionality reduction is thus needed to allow us to investigate only a subset of genetic attributes that most likely have interaction effects. In this article, we conduct a comprehensive study by examining six widely used feature selection methods in machine learning for filtering interacting SNPs rather than the ones with strong individual main effects. Those six feature selection methods include chi-square, logistic regression, odds ratio, and three Relief-based algorithms. By applying all six feature selection methods to both a simulated and a real GWAS datasets, we report that Relief-based methods perform the best in filtering SNPs associated with a disease in terms of strong interaction effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wellcome Trust Case Control Consortium, et al.: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145), 661 (2007)

    Google Scholar 

  2. Gibbs, R.A., Belmont, J.W., Hardenbol, P., Willis, T.D., Yu, F., Yang, H., Ch’ang, L.Y., Huang, W., Liu, B., Shen, Y., et al.: The international HapMap project. Nature 426(6968), 789–796 (2003)

    Article  Google Scholar 

  3. The 1000 Genomes Project Consortium, et al.: A map of human genome variation from population scale sequencing. Nature 467(7319), 1061 (2010)

    Google Scholar 

  4. Moore, J.H., Asselbergs, F.W., Williams, S.M.: Bioinformatics challenges for genome-wide association studies. Bioinformatics 26(4), 445–455 (2010)

    Article  Google Scholar 

  5. Hu, T., Andrew, A.S., Karagas, M.R., Moore, J.H.: Statistical epistasis networks reduce the computational complexity of searching three-locus genetic models. Proc. Pac. Symp. Biocomput. 18, 397–408 (2013)

    Google Scholar 

  6. Cordell, H.J.: Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum. Mol. Genet. 11(20), 2463–2468 (2002)

    Article  Google Scholar 

  7. Hu, T., Chen, Y., Kiralis, J.W., Moore, J.H.: ViSEN: methodology and software for visualization of statistical epistasis networks. Genet. Epidemiol. 37, 283–285 (2013)

    Article  Google Scholar 

  8. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution. ICML 3, 856–863 (2003)

    Google Scholar 

  9. Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(1–4), 131–156 (1997)

    Article  Google Scholar 

  10. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(Mar), 1157–1182 (2003)

    MATH  Google Scholar 

  11. Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer Science & Business Media, Heidelberg (2013)

    Google Scholar 

  12. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  13. Hua, J., Tembe, W.D., Dougherty, E.R.: Performance of feature-selection methods in the classification of high-dimension data. Pattern Recogn. 42(3), 409–424 (2009)

    Article  MATH  Google Scholar 

  14. Shah, S.C., Kusiak, A.: Data mining and genetic algorithm based gene/SNP selection. Artif. Intell. Med. 31(3), 183–196 (2004)

    Article  Google Scholar 

  15. Wu, Q., Ye, Y., Liu, Y., Ng, M.K.: SNP selection and classification of genome-wide SNP data using stratified sampling random forests. IEEE Trans. Nanobiosci. 11(3), 216–227 (2012)

    Article  Google Scholar 

  16. Brown, G., Pocock, A., Zhao, M.J., Luján, M.: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 13(Jan), 27–66 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Urbanowicz, R.J., Kiralis, J.W., Fisher, J.M., Moore, J.H.: Predicting the difficulty of pure, strict, epistatic models: metrics for simulated model selection. BioData Min. 5, 15 (2012)

    Article  Google Scholar 

  18. Urbanowicz, R.J., Kiralis, J., Sinnott-Armstrong, N.A., Heberling, T., Fisher, J.M., Moore, J.H.: Gametes: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Min. 5(1), 16 (2012)

    Article  Google Scholar 

  19. Schumacher, F.R., Schmit, S.L., Jiao, S., Edlund, C.K., Wang, H., Zhang, B., Hsu, L., Huang, S.C., Fischer, C.P., et al.: Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nature Commun. 6, 7138 (2015)

    Article  Google Scholar 

  20. Anderson, C.A., Pettersson, F.H., Clarke, G.M., Cardon, L.R., Morris, A.P., Zondervan, K.T.: Data quality control in genetic case-control association studies. Nat. Protoc. 5(9), 1564–1573 (2010)

    Article  Google Scholar 

  21. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  22. Hu, T., Sinnott-Armstrong, N.A., Kiralis, J.W., Andrew, A.S., Karagas, M.R., Moore, J.H.: Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinform. 12, 364 (2011)

    Article  Google Scholar 

  23. Fan, R., Zhong, M., Wang, S., Zhang, Y., Andrew, A., Karagas, M., Chen, H., Amos, C.I., **ong, M., Moore, J.H.: Entropy-based information gain approaches to detect and to characterize gene-gene and gene-environment interactions/correlations of complex diseases. Genet. Epidemiol. 35(7), 706–721 (2011)

    Article  Google Scholar 

  24. Li, H., Lee, Y., Chen, J.L., Rebman, E., Li, J., Lussier, Y.A.: Complex-disease networks of trait-associated single-nucleotide polymorphisms (SNPs) unveiled by information theory. J. Am. Med. Inform. Assoc. 19, 295–305 (2012)

    Article  Google Scholar 

  25. Hu, T., Chen, Y., Kiralis, J.W., Collins, R.L., Wejse, C., Sirugo, G., Williams, S.M., Moore, J.H.: An information-gain approach to detecting three-way epistatic interactions in genetic association studies. J. Am. Med. Inform. Assoc. 20(4), 630–636 (2013)

    Article  Google Scholar 

  26. Yates, F.: Contingency tables involving small numbers and the \(\chi \)2 test. Suppl. J. Roy. Stat. Soc. 1(2), 217–235 (1934)

    Article  MATH  Google Scholar 

  27. Szumilas, M.: Explaining odds ratios. J. Can. Acad. Child Adolesc. Psychiatry 19(3), 227 (2010)

    Article  Google Scholar 

  28. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of the Ninth International Workshop on Machine Learning, pp. 249–256 (1992)

    Google Scholar 

  29. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57868-4_57

    Chapter  Google Scholar 

  30. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn. 53(1–2), 23–69 (2003)

    Article  MATH  Google Scholar 

  31. Moore, J.H., White, B.C.: Tuning ReliefF for genome-wide genetic analysis. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 166–175. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71783-6_16

    Chapter  Google Scholar 

  32. Greene, C.S., Penrod, N.M., Kiralis, J., Moore, J.H.: Spatially uniform relieff (SURF) for computationally-efficient filtering of gene-gene interactions. BioData Min. 2(1), 5 (2009)

    Article  Google Scholar 

  33. Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F., Moore, J.H.: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69(1), 138–147 (2001)

    Article  Google Scholar 

  34. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., De Bakker, P.I., Daly, M.J., et al.: Plink: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559–575 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Newfoundland and Labrador Research and Development Corporation (RDC) Ignite Grant 5404.1942.101 and the Natural Science and Engineering Research Council (NSERC) of Canada Discovery Grant RGPIN-2016-04699 to TH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dorani, F., Hu, T. (2018). Feature Selection for Detecting Gene-Gene Interactions in Genome-Wide Association Studies. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation