Issues on the Simulation of Geometric Fractures of Bone Models

  • Conference paper
  • First Online:
VipIMAGE 2017 (ECCOMAS 2017)

Abstract

The simulation of realistic fracture cases on geometric models representing bone structures is almost an unexplored field of research. These fractured models have many applications in computer-assisted methods that support specialist in fracture reduction interventions. For instance, the generation of specific fracture patterns can provide uncommon cases for training simulators or even can be used to improve machine-learning applications. This paper focuses on the issues to be considered in the generation of fractures on geometric models that represent bone structures. The main recent contributions for fracturing geometric models are examined and the challenges in terms of the application of real bone fracture patterns on geometric models are presented. Moreover, different alternatives for the evaluation of the results obtained by the geometric fracture generation algorithms when applied to bone structures are showed. Finally, the potential applications of the virtual generation of specific bone fractures are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel-Wahab, A., Li, S., Silberschmidt, V.V.: Modelling fracture processes in bones (2014). doi:10.1533/9780857096739.2.268

  2. Abdel-Wahab, A.A., Maligno, A.R., Silberschmidt, V.V.: Micro-scale modelling of bovine cortical bone fracture: Analysis of crack propagation and microstructure using X-FEM. Comput. Mater. Sci. 52(1), 128–135 (2012). doi:10.1016/j.commatsci.2011.01.021

  3. Allegre, R., Barbier, A., Galin, E., Akkouche, S.: A hybrid shape representation for free-form modeling. In: Proceedings of Shape Modeling Applications, 2004. pp. 7–18 (2004). doi:10.1109/smi.2004.1314489

  4. Bo, W., Liang, Z., Yagang, W.: Rigid body simulation with local fracturing effects. In: 2011 Workshop on Digital Media and Digital Content Management, pp. 49–52 (2011). doi:10.1109/DMDCM.2011.74

  5. Desbenoit, B., Galin, E., Akkouche, S.: Modeling cracks and fractures. Visual Comput. 21(8–10), 717–726 (2005). doi:10.1007/s00371-005-0317-z

    Article  Google Scholar 

  6. Glondu, L., Muguercia, L., Marchal, M., Bosch, C., Rushmeier, H., Dumont, G., Drettakis, G.: Example-based fractured appearance. Comput. Graph. Forum 31(4), 1547–1556 (2012). doi:10.1111/j.1467-8659.2012.03151.x

  7. Gobron, S., Chiba, N.: Visual simulation of crack pattern based on 3D surface cellular automaton. Vis. Comput. 17, 287–309 (2001). doi:10.1007/s003710100099

    Article  MATH  Google Scholar 

  8. Hambli, R., Lespessailles, E., Benhamou, C.L.: Integrated remodeling-to-fracture finite element model of human proximal femur behavior. J. Mech. Behav. Biomed. Mater. 17, 89–106 (2012). doi:10.1016/j.jmbbm.2012.08.011

  9. Jiménez, J.J., Paulano, F., Pulido, R., Jiménez, J.: Computer assisted preoperative planning of bone fracture reduction: simulation techniques and new trends. Med. Image Anal. 30, 30–45 (2016). doi:10.1016/j.media.2015.12.005

    Article  Google Scholar 

  10. Kiapour, A., Kiapour, A.M., Kaul, V., Quatman, C.E., Wordeman, S.C., Hewett, T.E., Demetropoulos, C.K., Goel, V.K.: Finite element model of the knee for investigation of injury mechanisms: development and validation. J. Biomech. Eng. 136(1), 011,002 (2014). doi10.1115/1.4025692

  11. Lefebvre, S., Neyret, F.: Synthesizing Bark. In: Proceedings of the 13th Eurographics Workshop on Rendering, pp. 105–116 (2002)

    Google Scholar 

  12. Martinet, A., Galin, E., Desbenoit, B., Akkouche, S.: Procedural modeling of cracks and fractures. In: Proceedings—Shape Modeling International SMI, pp. 346–349 (2004). doi:10.1109/SMI.2004.1314524

  13. Messmer, P., Long, G., Suhm, N., Hehli, M.: Three-dimensional fracture simulation for preoperative planning and education. Eur. J. Trauma 27(4), 171–177 (2001). doi:10.1007/s00068-001-1065-z

  14. Muguercia, L., Bosch, C., Patow, G.: Fracture modeling in computer graphics. Comput. Graph. 45, 86–100 (2014). doi:10.1016/j.cag.2014.08.006

  15. Müller, M., Chentanez, N., Kim, T.Y.: Real time dynamic fracture with volumetric approximate convex decompositions. ACM Trans. Graph. 32(4), 1 (2013). doi:10.1145/2461912.2461934

  16. Neff, M., Fiume, E.: A visual model for blast waves and fracture. In: Proceedings of the 1999 Conference on Graphics Interface, pp. 193–202 (1999)

    Google Scholar 

  17. Ning, J.F., Li, S.K.: A fast approach to simulate fracture of rigid body. In: ICALI, International Conference on Audio, Language and Image Processing, Proceedings, pp. 1301–1305 (2010). doi:10.1109/ICALIP.2010.5685079

  18. NVIDIA: Nvidia apex. http://www.nvidia.com/object/apex.html

  19. Oh, S., Shin, S., Jun, H.: Practical simulation of hierarchical brittle fracture. Comput. Animat. Virtual Worlds 23(3–4), 291–300 (2012). doi:10.1002/cav.1443

    Article  Google Scholar 

  20. Ota, T., Yamamoto, I., Morita, R.: Fracture simulation of the femoral bone using the finite-element method: how a fracture initiates and proceeds. J. Bone Miner. Metab. 17(2), 108–112 (1999). doi:10.1007/s007740050072

  21. Pakdel, A., Fialkov, J., Whyne, C.M.: High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures. J. Biomech. 49(9), 1454–1460 (2016). doi:10.1016/j.jbiomech.2016.03.015

  22. Paulano-Godino, F., Jiménez-Delgado, J.J., Pulido-Ramírez, R.: Trends on identification of fractured bone tissue from CT images. In: Proceedings of IV Eccomas Thematic Conference on Computational Vision and Medical Image Processing (VIPIMAGE), pp. 263–269. CRC Press (2013). doi:10.1201/b15810-47

  23. Rodrigues, L., Lopes, D., Folgado, J., Fernandes, P., Pires, E., Casas, E.L., Faleiros, R.: Bone remodelling analysis of a bovine femur for a veterinary implant design. Comput. Methods Biomech. Biomed. Eng. 12(6), 683–690 (2009). doi:10.1080/10255840902865641

    Article  Google Scholar 

  24. Rodrigues, L.B., Las Casas, E.B., Lopes, D.S., Folgado, J., Fernandes, P.R., Pires, E.A.C.B., Alves, G.E.S., Faleiros, R.R.: A finite element model to simulate femoral fractures in calves: testing different polymers for intramedullary interlocking nails. Vet. Surg. 41(7), 838–844 (2012). doi:10.1111/j.1532-950X.2012.01032.x

    Article  Google Scholar 

  25. Sabet, F.A., Raeisi Najafi, A., Hamed, E., Jasiuk, I.: Modelling of bone fracture and strength at different length scales: a review. Interface Focus 6(1), 20150,055 (2016). doi:10.1098/rsfs.2015.0055

  26. Su, J., Schroeder, C., Fedkiw, R.: Energy stability and fracture for frame rate rigid body simulations. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation - SCA 2009, New York, USA, pp. 155–164. ACM, New York (2009). doi:10.1145/1599470.1599491

  27. Ural, A., Mischinski, S.: Multiscale modeling of bone fracture using cohesive finite elements. Eng. Fract. Mech. 103, 141–152 (2013). doi:10.1016/j.engfracmech.2012.05.008

  28. Valette, G., Prévost, S., Lucas, L., Léonard, J.: A dynamic model of cracks development based on a 3D discrete shrinkage volume propagation. Comput. Graph. Forum 27(1), 47–62 (2008). doi:10.1111/j.1467-8659.2007.01042.x

    Article  Google Scholar 

  29. Wu, J., Aage, N., Westermann, R., Sigmund, O.: Infill optimization for additive manufacturing—approaching bone-like porous structures. IEEE Trans. Vis. Comput. Graph. 2626(c), 1–14 (2017). doi:10.1109/TVCG.2017.2655523, http://arxiv.org/abs/1608.04366, http://ieeexplore.ieee.org/document/7829422/

Download references

Acknowledgements

This work has been partially supported by the Ministerio de Economía y Competitividad and the European Union (via ERDF funds) through the research project DPI2015-65123-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Paulano-Godino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Paulano-Godino, F., Jiménez-Pérez, J.R., Jiménez-Delgado, J.J. (2018). Issues on the Simulation of Geometric Fractures of Bone Models. In: Tavares, J., Natal Jorge, R. (eds) VipIMAGE 2017. ECCOMAS 2017. Lecture Notes in Computational Vision and Biomechanics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-68195-5_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68195-5_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68194-8

  • Online ISBN: 978-3-319-68195-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation