Sample Size Consideration for Equivalent Test of Tier-1 Quality Attributes for Analytical Biosimilarity Assessment

  • Conference paper
  • First Online:
Pharmaceutical Statistics (MBSW 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 218))

Included in the following conference series:

  • 923 Accesses

Abstract

FDA recommends a stepwise approach for obtaining the totality-of-the-evidence for assessing biosimilarity between a proposed biosimilar product and its corresponding reference biologic product being considered (US Food and Drug Administration.: Guidance for industry: scientific considerations in demonstrating biosimilarity to a reference product. US Food and Drug Administration, Silver Spring, 2015 [6]). The stepwise approach starts with analytical studies for assessing similarity in critical quality attributes (CQAs), which are relevant to clinical outcomes. For critical quality attributes that are most relevant to clinical outcomes (Tier 1 CQAs), FDA requires equivalence testing to be performed for similarity assessment, based on an equivalence acceptance criteria. In practice, the number of Tier 1 CQAs might be greater than one, and should be no more than four. The number of biosimilar lots is often recommended to be no less than 10, and the ratio between the reference product sample size and biosimilar product sample size is recommended within the range from \( 2/3 \) to \( 3/2 \) (US Food and Drug Administration.: Guidance for industry: Statistical Approaches to Evaluate Analytical Similarity. US Food and Drug Administration, Silver Spring, 2017 [7]). Accordingly, we derive the formulas for the power calculation for the sample size for analytical similarity assessment based on the equivalence testing currently used in analytical biosimilar assessment (Tsong et al. J Biopharm Stat 27:197–205, (2017)[10]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burdick, R.K., Thomas, N., Cheng, A.: Statistical considerations in demonstrating cmc analytical similarity for a biosimilar product. Stat. Biopharm. Res. 9(3), 249–257 (2017)

    Article  Google Scholar 

  2. Chen, Y.M., Weng, Y.T., Dong, X., Tsong, Y.: Wald tests for variance-adjusted equivalence assessment with normal endpoints. J. Biopharm. Stat. 27(2), 308–316 (2017)

    Article  Google Scholar 

  3. Chow, S.C., Song, F., Bai, H.: Sample size requirement in analytical studies for similarity assessment. J. Biopharm. Stat. 27(2), 233–238 (2017)

    Article  Google Scholar 

  4. Dong, X., Bian, Y., Tsong, Y., Wang, T.: Exact test-based approach for equivalence test with parameter margin. J. Biopharm. Stat. 27(2), 317–330 (2017)

    Article  Google Scholar 

  5. Dong, X., Weng, Y.T., Tsong, Y.: Adjustment for unbalanced sample size for analytical biosimilar equivalence assessment. J. Biopharm. Stat. 27(2), 220–232 (2017)

    Article  Google Scholar 

  6. Joarder, A.H.: Moments of the product and ratio of two correlated chi-square variables. Stat. Pap. 50(3), 581–592 (2009)

    Article  MathSciNet  Google Scholar 

  7. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math. Dokl. 4, 240–243. American Mathematical Society (1963)

    Google Scholar 

  8. Tsong, Y., Dong, X., Shen, M.: Development of statistical methods for analytical similarity assessment. J. Biopharm. Stat. 27(2), 197–205 (2017)

    Article  Google Scholar 

  9. US Food and Drug Administration.: Guidance for industry: scientific considerations in demonstrating biosimilarity to a reference product. Silver Spring, MD., US Food and Drug Administration (2015)

    Google Scholar 

  10. US Food and Drug Administration.: Guidance for industry: Statistical Approaches to Evaluate Analytical Similarity. Silver Spring, MD., US Food and Drug Administration (2017)

    Google Scholar 

  11. Weng, Y.T., Tsong, Y., Shen, M., and Wang, C.: Improved Wald test for equivalence assessment of analytical biosimilarity. Int. J. of Clinical Biostat. And Biometrics. (2018) Submitted

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhua Wang .

Editor information

Editors and Affiliations

Additional information

Disclaimer: This article reflects the views of the authors and should not be construed to represent FDA’s views or policies.

Appendix

Appendix

  1. 1.

    The proof of Theorem 1.

Proof: Because the power function is

$$ {\text{P}}_{1} = {\text{P}}\left( {{\text{T}}_{1} = \frac{{\left( {\overline{\text{X}}_{\text{T}} - \overline{\text{X}}_{\text{R}} } \right) + 1.5\upsigma_{\text{R}} }}{{\sqrt {\frac{{{\text{S}}_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{{\text{S}}_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} }} > {\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}} , {\text{T}}_{2} = \frac{{\left( {\overline{\text{X}}_{\text{T}} - \overline{\text{X}}_{\text{R}} } \right) - 1.5\upsigma_{\text{R}} }}{{\sqrt {\frac{{{\text{S}}_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{{\text{S}}_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} }} < - {\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}} } \right) $$
(A.1)

given \( \upmu_{\text{T}} -\upmu_{\text{R}} =\uptheta \in \left( { - 1.5\upsigma_{\text{R}} , + 1.5\upsigma_{\text{R}} } \right),\upsigma_{\text{T}} ,\upsigma_{\text{R}} \). The inequailities in (A.1) is equivalent to

$$ - 1.5\upsigma_{\text{R}} + {\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}} \sqrt {\frac{{{\text{S}}_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{{\text{S}}_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} < \left( {\overline{\text{X}}_{\text{T}} - \overline{\text{X}}_{\text{R}} } \right) < 1.5\upsigma_{\text{R}} - {\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}} \sqrt {\frac{{{\text{S}}_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{{\text{S}}_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} $$
(A.2)

Because \( {\text{Z}} = \frac{{\left( {\overline{\text{X}}_{\text{T}} - \overline{\text{X}}_{\text{R}} -\uptheta} \right)}}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }}\sim {\text{N}}\left( {0, 1} \right) \), the inequailities in (A.2) is equivalent to

$$ \frac{{\left( { - 1.5\upsigma_{\text{R}} -\uptheta} \right)}}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} + \frac{{{\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}} \sqrt {\frac{{{\text{S}}_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{{\text{S}}_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} }}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} < Z < \frac{{\left( {1.5\upsigma_{\text{R}} -\uptheta} \right)}}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} - \frac{{{\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}} \sqrt {\frac{{{\text{S}}_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{{\text{S}}_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} }}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} $$
(A.3)

Let \( {\text{x}}_{1} = \frac{{\left( {{\text{n}}_{\text{T}} - 1} \right){\text{S}}_{\text{T}}^{2} }}{{\upsigma_{\text{T}}^{2} }}\sim\upchi_{{{\text{n}}_{\text{T}} - 1}}^{2} \) and \( {\text{x}}_{2} = \frac{{\left( {{\text{n}}_{\text{R}} - 1} \right){\text{S}}_{\text{R}}^{2} }}{{\upsigma_{\text{R}}^{2} }}\sim\upchi_{{{\text{n}}_{\text{R}} - 1}}^{2} \), then \( {\text{S}}_{\text{T}}^{2} = \frac{{{\text{x}}_{1}\upsigma_{\text{T}}^{2} }}{{\left( {{\text{n}}_{\text{T}} - 1} \right)}} \) and \( {\text{S}}_{\text{R}}^{2} = \frac{{{\text{x}}_{2}\upsigma_{\text{R}}^{2} }}{{\left( {{\text{n}}_{\text{R}} - 1} \right)}} \), the inequalities in (A.3) is

$$ \frac{{\left( { - 1.5\upsigma_{\text{R}} - {\varvec{\theta}}} \right)}}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} + {\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}} \frac{{\sqrt {\frac{{{\text{x}}_{1}\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} \left( {{\text{n}}_{\text{T}} - 1} \right)}} + \frac{{{\text{x}}_{2}\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} \left( {{\text{n}}_{\text{R}} - 1} \right)}}} }}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} < Z < \frac{{\left( {1.5\upsigma_{\text{R}} -\uptheta} \right)}}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} - {\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}} \frac{{\sqrt {\frac{{{\text{x}}_{1}\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} \left( {{\text{n}}_{\text{T}} - 1} \right)}} + \frac{{{\text{x}}_{2}\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} \left( {{\text{n}}_{\text{R}} - 1} \right)}}} }}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} $$
(A.4)

Let \( {\text{A}}_{1} = \frac{{1.5\upsigma_{\text{R}} -\uptheta}}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} - {\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}} \sqrt {\frac{{\frac{{{\text{x}}_{1}\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} \left( {{\text{n}}_{\text{T}} - 1} \right)}} + \frac{{{\text{x}}_{2}\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} \left( {{\text{n}}_{\text{R}} - 1} \right)}}}}{{\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}}}} \) and \( {\text{B}}_{1} = \frac{{ - 1.5\upsigma_{\text{R}} -\uptheta}}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} + {\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}} \sqrt {\frac{{\frac{{{\text{x}}_{1}\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} \left( {{\text{n}}_{\text{T}} - 1} \right)}} + \frac{{{\text{x}}_{2}\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} \left( {{\text{n}}_{\text{R}} - 1} \right)}}}}{{\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}}}} \),

From (A.4) since \( {\text{B}}_{1} < {\text{A}}_{1} \), we can get that \( \frac{{{\text{x}}_{1}\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} \left( {{\text{n}}_{\text{T}} - 1} \right)}} + \frac{{{\text{x}}_{2}\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} \left( {{\text{n}}_{\text{R}} - 1} \right)}} < \frac{{9\upsigma_{\text{R}}^{2} }}{{4{\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}}^{2} }} \), then the power function (A.1) is

$$ {\text{E}}_{{{\text{x}}_{1} ,{\text{x}}_{2} }} \left\{ {{\text{P}}({\text{B}}_{1} < Z < {\text{A}}_{1} )} \right\} $$

Given \( {\text{x}}_{1} \sim\upchi_{{{\text{n}}_{\text{T}} - 1}}^{2} \) and \( {\text{x}}_{2} \sim\upchi_{{{\text{n}}_{\text{R}} - 1}}^{2} \), the power function is

$$ {\text{P}}_{1} = \mathop \smallint \limits_{0}^{ + \infty } \mathop \smallint \limits_{0}^{ + \infty } \left\{ {\left[ {\Phi \left( {{\text{A}}_{1} } \right) - \Phi \left( {{\text{B}}_{1} } \right)} \right] \times {\text{f}}\left( {{\text{x}}_{1} , {\text{x}}_{2} } \right)} \right\} \times {\mathbf{I}}\left\{ {\frac{{{\text{x}}_{1}\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} \left( {{\text{n}}_{\text{T}} - 1} \right)}} + \frac{{{\text{x}}_{2}\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} \left( {{\text{n}}_{\text{R}} - 1} \right)}} \le \frac{{9\upsigma_{\text{R}}^{2} }}{{4{\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}}^{2} }}} \right\}{\text{dx}}_{1} {\text{dx}}_{2} $$

where \( {\text{f}}\left( {{\text{x}}_{1} , {\text{x}}_{2} } \right) = {\text{f}}\left( {{\text{x}}_{1} } \right){\text{f}}\left( {{\text{x}}_{2} } \right) \) is the density function of two independent Chi-square distributions with \( {\text{x}}_{1} \sim\upchi_{{{\text{n}}_{\text{T}} - 1}}^{2} \) and \( {\text{x}}_{2} \sim\upchi_{{{\text{n}}_{\text{R}} - 1}}^{2} \). \( {\mathbf{I}}\{ .\} \) is the indication function to restrict the triangle area formed by \( {\text{x}}_{1} \) and \( {\text{x}}_{2} \).

  1. 2.

    The proof of Theorem 2.

Proof: By using the Satterthwaite approximation

$$ \frac{{{\text{df}}^{ *} \left( {\frac{{{\text{S}}_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{{\text{S}}_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} \right)}}{{\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}}}\sim\upchi_{{{\text{df}}^{ *} }}^{2} $$
(A.5)

Where \( {\text{df}}^{ *} = \left( {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} \right)^{2} /\left( {\frac{{\upsigma_{\text{T}}^{4} }}{{\left( {{\text{n}}_{\text{T}}^{ *} } \right)^{2} ({\text{n}}_{\text{T}} - 1)}} + \frac{{\upsigma_{\text{R}}^{4} }}{{\left( {{\text{n}}_{\text{R}}^{ *} } \right)^{2} ({\text{n}}_{\text{R}} - 1)}}} \right) \), let \( {\text{S}}^{2} = \frac{{{\text{S}}_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{{\text{S}}_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }} \) and \( {\text{x}} = \frac{{{\text{df}}^{ *} {\text{S}}^{2} }}{{\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}}}\sim\upchi_{{{\text{df}}^{ *} }}^{2} \), then the inequalities (A.3) is

$$ \frac{{\left( { - 1.5\upsigma_{\text{R}} -\uptheta} \right)}}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} + {\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}} \sqrt {\frac{\text{x}}{{{\text{df}}^{ *} }}} \frac{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} }}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} < Z < \frac{{\left( {1.5\upsigma_{\text{R}} -\uptheta} \right)}}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} - {\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}} \sqrt {\frac{\text{x}}{{{\text{df}}^{ *} }}} \frac{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} }}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} $$
(A.6)

Let \( {\text{A}}_{1}^{ '} = \frac{{1.5\upsigma_{\text{R}} -\uptheta}}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} - {\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}} \sqrt {\frac{\text{x}}{{{\text{df}}^{ *} }}} \sqrt {\frac{{\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}}}{{\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}}}} \) and \( {\text{B}}_{1}^{ '} = \frac{{ - 1.5\upsigma_{\text{R}} -\uptheta}}{{\sqrt {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}} }} + {\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}} \sqrt {\frac{\text{x}}{{{\text{df}}^{ *} }}} \sqrt {\frac{{\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}}}{{\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}} }}}}} \), using \( {\text{B}}_{1}^{ '} < {\text{A}}_{1}^{ '} \), we can get \( {\text{x}} < L = \frac{{9\upsigma_{\text{R}}^{2} {\text{df}}^{ *} }}{{4{\text{t}}_{{{\text{df}}^{ *} , 1 -\upalpha}}^{2} \left( {\frac{{\upsigma_{\text{T}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{\upsigma_{\text{R}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} \right)}} \), the power function (A.1) is \( {\text{E}}_{\text{x }} \left\{ {{\text{P}}({\text{B}}_{1}^{ '} < Z < {\text{A}}_{1}^{ '} )} \right\}, \) which is equivalent to

$$ {\text{P}}_{1}^{ '} = \mathop \smallint \limits_{0}^{\text{L}} \left\{ {\left[ {\Phi \left( {{\text{A}}_{1}^{ '} } \right) - \Phi \left( {{\text{B}}_{1}^{ '} } \right)} \right] \times \frac{1}{{2^{{\frac{{{\text{df}}^{ *} }}{2}}} \varGamma \left( {\frac{{{\text{df}}^{ *} }}{2}} \right)}}{\text{x}}^{{\frac{{{\text{df}}^{ *} }}{2} - 1}} {\text{e}}^{{ - \frac{\text{x}}{2}}} } \right\}{\text{dx}} $$
  1. 3.

    The proof of Theorem 4.

Proof: If there are 2 quality attributes that are correlated, assume the 2 quality attributes in the reference product \( {\text{X}}_{{1,{\text{R}}}} \) and \( {\text{X}}_{{2, {\text{R}}}} \) have the correlation value \( \uprho \); the same as the 2 quality attributes in the test product \( {\text{X}}_{{1,{\text{T}}}} \) and \( {\text{X}}_{{2, {\text{T}}}} \)

$$ \left[ {\begin{array}{*{20}c} {{\text{X}}_{{1,{\text{R}}}} } \\ {{\text{X}}_{{2, {\text{R}}}} } \\ \end{array} } \right]\sim {\text{MVN}}\left( {\left[ {\begin{array}{*{20}c} {\upmu_{{1,{\text{R}}}} } \\ {\upmu_{{2, {\text{R}}}} } \\ \end{array} } \right], \left[ {\begin{array}{*{20}c} {\upsigma_{{1,{\text{R}}}}^{2} } & {\uprho \upsigma _{{1,{\text{R}}}}\upsigma_{{2,{\text{R}}}} } \\ {\uprho \upsigma _{{1,{\text{R}}}}\upsigma_{{2,{\text{R}}}} } & {\upsigma_{{2,{\text{R}}}}^{2} } \\ \end{array} } \right]} \right) $$
$$ \left[ {\begin{array}{*{20}c} {{\text{X}}_{{1,{\text{T}}}} } \\ {{\text{X}}_{{2, {\text{T}}}} } \\ \end{array} } \right]\sim {\text{MVN}}\left( {\left[ {\begin{array}{*{20}c} {\upmu_{{1,{\text{T}}}} } \\ {\upmu_{{2, {\text{T}}}} } \\ \end{array} } \right], \left[ {\begin{array}{*{20}c} {\upsigma_{{1,{\text{T}}}}^{2} } & {\uprho \upsigma _{{1,{\text{T}}}}\upsigma_{{2,{\text{T}}}} } \\ {\uprho \upsigma _{{1,{\text{T}}}}\upsigma_{{2,{\text{T}}}} } & {\upsigma_{{2,{\text{T}}}}^{2} } \\ \end{array} } \right]} \right) $$

We further assume the sample size of either quality attribute is the same in the reference product or in the test product, that is \( {\text{n}}_{{1,{\text{R}}}} = {\text{n}}_{{2,{\text{R}}}} = {\text{n}}_{\text{R}} \) and \( {\text{n}}_{{1,{\text{T}}}} = {\text{n}}_{{2,{\text{T}}}} = {\text{n}}_{\text{T}} \), given the hypotheses in (6) and test statistics in (7), the power of passing both equivalence testings is equivalent to calculate

$$ {\text{P}}\left( {\left[ {\begin{array}{*{20}c} { - 1.5\upsigma_{{1, {\text{R}}}} + {\text{t}}_{{{\text{df}}_{1}^{ *} , 1 -\upalpha}} \sqrt {\frac{{{\text{S}}_{{1, {\text{T}}}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{{\text{S}}_{{1, {\text{R}}}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} } \\ { - 1.5\upsigma_{{2, {\text{R}}}} + {\text{t}}_{{{\text{df}}_{2}^{ *} , 1 -\upalpha}} \sqrt {\frac{{{\text{S}}_{{2, {\text{T}}}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{{\text{S}}_{{2, {\text{R}}}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} } \\ \end{array} } \right] \le \left[ {\begin{array}{*{20}c} {\overline{\text{X}}_{{1.{\text{T}}}} - \overline{\text{X}}_{{1.{\text{R}}}} } \\ {\overline{\text{X}}_{{2.{\text{T}}}} - \overline{\text{X}}_{{2.{\text{R}}}} } \\ \end{array} } \right] \le \left[ {\begin{array}{*{20}c} { + 1.5\upsigma_{{1, {\text{R}}}} - {\text{t}}_{{{\text{df}}_{1}^{ *} , 1 -\upalpha}} \sqrt {\frac{{{\text{S}}_{{1, {\text{T}}}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{{\text{S}}_{{1, {\text{R}}}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} } \\ { + 1.5\upsigma_{{2, {\text{R}}}} - {\text{t}}_{{{\text{df}}_{2}^{ *} , 1 -\upalpha}} \sqrt {\frac{{{\text{S}}_{{2, {\text{T}}}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{{\text{S}}_{{2, {\text{R}}}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} } \\ \end{array} } \right]} \right) $$
(A.9)

The degrees of freedom \( {\text{df}}_{1}^{ *} = \left( {\frac{{\upsigma_{{1, {\text{T}}}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{\upsigma_{{1, {\text{R}}}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} \right)^{2} /\left( {\frac{{\upsigma_{{1, {\text{T}}}}^{4} }}{{\left( {{\text{n}}_{\text{T}}^{ *} } \right)^{2} ({\text{n}}_{\text{T}} - 1)}} + \frac{{\upsigma_{{1, {\text{R}}}}^{4} }}{{\left( {{\text{n}}_{\text{R}}^{ *} } \right)^{2} ({\text{n}}_{\text{R}} - 1)}}} \right) \) and \( {\text{df}}_{2}^{ *} = \left( {\frac{{\upsigma_{{2, {\text{T}}}}^{2} }}{{{\text{n}}_{\text{T}}^{ *} }} + \frac{{\upsigma_{{2, {\text{R}}}}^{2} }}{{{\text{n}}_{\text{R}}^{ *} }}} \right)^{2} /\left( {\frac{{\upsigma_{{1, {\text{T}}}}^{4} }}{{\left( {{\text{n}}_{\text{T}}^{ *} } \right)^{2} ({\text{n}}_{\text{T}} - 1)}} + \frac{{\upsigma_{{1, {\text{R}}}}^{4} }}{{\left( {{\text{n}}_{\text{R}}^{ *} } \right)^{2} ({\text{n}}_{\text{R}} - 1)}}} \right) \). Let \( {\text{u}}_{\text{T}} = \frac{{({\text{n}}_{\text{T}} - 1){\text{S}}_{{1, {\text{T}}}}^{2} }}{{\upsigma_{{1, {\text{T}}}}^{2} }}\sim\upchi_{{{\text{n}}_{\text{T}} - 1}}^{2} \), \( {\text{v}}_{\text{T}} = \frac{{({\text{n}}_{\text{T}} - 1){\text{S}}_{{2, {\text{T}}}}^{2} }}{{\upsigma_{{2, {\text{T}}}}^{2} }}\sim\upchi_{{{\text{n}}_{\text{T}} - 1}}^{2} \) and \( {\text{u}}_{\text{R}} = \frac{{({\text{n}}_{\text{R}} - 1){\text{S}}_{{1, {\text{R}}}}^{2} }}{{\upsigma_{{1, {\text{R}}}}^{2} }}\sim\upchi_{{{\text{n}}_{\text{R}} - 1}}^{2} \), \( {\text{v}}_{\text{R}} = \frac{{({\text{n}}_{\text{R}} - 1){\text{S}}_{{2, {\text{R}}}}^{2} }}{{\upsigma_{{2, {\text{R}}}}^{2} }}\sim\upchi_{{{\text{n}}_{\text{R}} - 1}}^{2} \), and \( \uptheta_{1} =\upmu_{{1,{\text{T}}}} -\upmu_{{1,{\text{R}}}} \), \( \uptheta_{2} =\upmu_{{2,{\text{T}}}} -\upmu_{{2,{\text{R}}}} \). The inequailities in (A.9) is equivalent to

$$\begin{aligned} &\left[ {\begin{array}{*{20}c} { - 1.5\upsigma_{{1, {\text{R}}}} -\uptheta_{1} + {\text{t}}_{{{\text{df}}_{1}^{ *} , 1 -\upalpha}} \sqrt {\frac{{\upsigma_{{1, {\text{T}}}}^{2} {\text{u}}_{\text{T}} }}{{{\text{n}}_{\text{T}}^{ *} ({\text{n}}_{\text{T}} - 1)}} + \frac{{\upsigma_{{1, {\text{R}}}}^{2} {\text{u}}_{\text{R}} }}{{{\text{n}}_{\text{R}}^{ *} ({\text{n}}_{\text{R}} - 1)}}} } \\ { - 1.5\upsigma_{{2, {\text{R}}}} -\uptheta_{2} + {\text{t}}_{{{\text{df}}_{2}^{ *} , 1 -\upalpha}} \sqrt {\frac{{\upsigma_{{2, {\text{T}}}}^{2} {\text{v}}_{\text{T}} }}{{{\text{n}}_{\text{T}}^{ *} ({\text{n}}_{\text{T}} - 1)}} + \frac{{\upsigma_{{2, {\text{R}}}}^{2} {\text{v}}_{\text{R}} }}{{{\text{n}}_{\text{R}}^{ *} ({\text{n}}_{\text{R}} - 1)}}} } \\ \end{array} } \right] \le {\mathbf{B}} \\ & \quad \le \left[ {\begin{array}{*{20}c} { + 1.5\upsigma_{{1, {\text{R}}}} -\uptheta_{1} - {\text{t}}_{{{\text{df}}_{1}^{ *} , 1 -\upalpha}} \sqrt {\frac{{\upsigma_{{1, {\text{T}}}}^{2} {\text{u}}_{\text{T}} }}{{{\text{n}}_{\text{T}}^{ *} ({\text{n}}_{\text{T}} - 1)}} + \frac{{\upsigma_{{1, {\text{R}}}}^{2} {\text{u}}_{\text{R}} }}{{{\text{n}}_{\text{R}}^{ *} ({\text{n}}_{\text{R}} - 1)}}} } \\ { + 1.5\upsigma_{{2, {\text{R}}}} -\uptheta_{2} - {\text{t}}_{{{\text{df}}_{2}^{ *} , 1 -\upalpha}} \sqrt {\frac{{\upsigma_{{2, {\text{T}}}}^{2} {\text{v}}_{\text{T}} }}{{{\text{n}}_{\text{T}}^{ *} ({\text{n}}_{\text{T}} - 1)}} + \frac{{\upsigma_{{2, {\text{R}}}}^{2} {\text{v}}_{\text{R}} }}{{{\text{n}}_{\text{R}}^{ *} ({\text{n}}_{\text{R}} - 1)}}} } \\ \end{array} } \right] \end{aligned}$$
(A.10)

where \( {\mathbf{B}} \) is a bi-variate normal distribution with mean \( 0 \) and variance-covariance matrix

$$ {\varvec{\Sigma}} = \left[ {\begin{array}{*{20}c} {\frac{{\upsigma_{{1, {\text{T}}}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{{1, {\text{R}}}}^{2} }}{{{\text{n}}_{\text{R}} }}} & {\frac{{\uprho \upsigma _{{1,{\text{T}}}}\upsigma_{{2, {\text{T}}}} }}{{{\text{n}}_{\text{T}} }} + \frac{{\uprho \upsigma _{{1,{\text{R}}}}\upsigma_{{2, {\text{R}}}} }}{{{\text{n}}_{\text{R}} }}} \\ {\frac{{\uprho \upsigma _{{1,{\text{T}}}}\upsigma_{{2, {\text{T}}}} }}{{{\text{n}}_{\text{T}} }} + \frac{{\uprho \upsigma _{{1,{\text{R}}}}\upsigma_{{2, {\text{R}}}} }}{{{\text{n}}_{\text{R}} }}} & {\frac{{\upsigma_{{2, {\text{T}}}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{{2, {\text{R}}}}^{2} }}{{{\text{n}}_{\text{R}} }}} \\ \end{array} } \right] $$

let \( \uptau_{1} = \sqrt {\frac{{\upsigma_{{1, {\text{T}}}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{{1, {\text{R}}}}^{2} }}{{{\text{n}}_{\text{R}} }}} \); \( \uptau_{2} = \sqrt {\frac{{\upsigma_{{2, {\text{T}}}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{{2, {\text{R}}}}^{2} }}{{{\text{n}}_{\text{R}} }}} \); \( \uprho^{ *} = \frac{{\uprho \upsigma _{{1,{\text{T}}}}\upsigma_{{2, {\text{T}}}} }}{{{\text{n}}_{\text{T}} }} + \frac{{\uprho \upsigma _{{1,{\text{R}}}}\upsigma_{{2, {\text{R}}}} }}{{{\text{n}}_{\text{R}} }}/\sqrt {\left( {\frac{{\upsigma_{{1, {\text{T}}}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{{1, {\text{R}}}}^{2} }}{{{\text{n}}_{\text{R}} }}} \right)\left( {\frac{{\upsigma_{{2, {\text{T}}}}^{2} }}{{{\text{n}}_{\text{T}} }} + \frac{{\upsigma_{{2, {\text{R}}}}^{2} }}{{{\text{n}}_{\text{R}} }}} \right)} \), then \( {\mathbf{B}} \) is a bi-variate normal distribution with mean \( 0 \) and variance-covariance matrix \( \left[ {\begin{array}{*{20}c} {\uptau_{1}^{2} } & {\uprho^{ *}\uptau_{1}\uptau_{2} } \\ {\uprho^{ *}\uptau_{1}\uptau_{2} } & {\uptau_{2}^{2} } \\ \end{array} } \right] \). The power function would be

$$ {\text{P}}_{2} = {\text{E}}_{{{\text{u}}_{\text{T}} , {\text{v}}_{\text{T}} , {\text{u}}_{\text{R}} , {\text{v}}_{\text{R}} }} \left\{ {{\text{P(}}{\mathbf{Inequality}} ({\text{A}}.\,10)\,{\text{Holds | u}}_{\text{T}} , {\text{v}}_{\text{T}} , {\text{u}}_{\text{R}} , {\text{v}}_{\text{R}} )} \right\} $$

Let \( {\text{U}} = \frac{{\upsigma_{{1, {\text{T}}}}^{2} {\text{u}}_{\text{T}} }}{{{\text{n}}_{\text{T}}^{ *} ({\text{n}}_{\text{T}} - 1)}} + \frac{{\upsigma_{{1, {\text{R}}}}^{2} {\text{u}}_{\text{R}} }}{{{\text{n}}_{\text{R}}^{ *} ({\text{n}}_{\text{R}} - 1)}} \le \frac{{9\upsigma_{{1.{\text{R}}}}^{2} }}{{4{\text{t}}_{{{\text{df}}_{1}^{ *} , 1 -\upalpha}}^{2} }} \) and \( {\text{V}} = \frac{{\upsigma_{{2, {\text{T}}}}^{2} {\text{v}}_{\text{T}} }}{{{\text{n}}_{\text{T}}^{ *} ({\text{n}}_{\text{T}} - 1)}} + \frac{{\upsigma_{{2, {\text{R}}}}^{2} {\text{v}}_{\text{R}} }}{{{\text{n}}_{\text{R}}^{ *} ({\text{n}}_{\text{R}} - 1)}} \le \frac{{9\upsigma_{{2.{\text{R}}}}^{2} }}{{4{\text{t}}_{{{\text{df}}_{2}^{ *} , 1 -\upalpha}}^{2} }} \) by the inequalities (A.10), the limits \( {\text{LL}}_{1} = - 1.5\upsigma_{{1, {\text{R}}}} -\uptheta_{1} + {\text{t}}_{{{\text{df}}_{1}^{ *} , 1 -\upalpha}} \sqrt {\text{U}} \), \( {\text{LL}}_{2} = - 1.5\upsigma_{{2, {\text{R}}}} -\uptheta_{2} + {\text{t}}_{{{\text{df}}_{2}^{ *} , 1 -\upalpha}} \sqrt {\text{V}} \) and \( {\text{UL}}_{1} = 1.5\upsigma_{{1, {\text{R}}}} -\uptheta_{1} - {\text{t}}_{{{\text{df}}_{1}^{ *} , 1 -\upalpha}} \sqrt {\text{U}} \), \( {\text{UL}}_{2} = 1.5\upsigma_{{2, {\text{R}}}} -\uptheta_{2} - {\text{t}}_{{{\text{df}}_{2}^{ *} , 1 -\upalpha}} \sqrt {\text{V}} \); then

$$ {\text{P}}_{2} = {\text{E}}_{{{\text{U}}, {\text{V}}}} \left\{ {\mathop \smallint \limits_{{{\text{LL}}_{1} }}^{{{\text{UL}}_{1} }} \mathop \smallint \limits_{{{\text{LL}}_{2} }}^{{{\text{UL}}_{2} }} \frac{1}{{2\uppi \uptau _{1}\uptau_{2} \sqrt {1 -\uprho^{ * 2} } }}{ \exp }\left\{ { - \frac{{{\text{x}}_{1}^{2} }}{{2\uptau_{1}^{2} \left( {1 -\uprho^{ * 2} } \right)}} + \frac{{\uprho^{ *} {\text{x}}_{1} {\text{x}}_{2} }}{{\uptau_{1}\uptau_{2} \left( {1 -\uprho^{ * 2} } \right)}} - \frac{{{\text{x}}_{2}^{2} }}{{2\uptau_{2}^{2} \left( {1 -\uprho^{ * 2} } \right)}}} \right\}{\text{dx}}_{1} {\text{dx}}_{2} } \right\} $$

The problem remains to find the joint distribution of U and V. Please note that from theorem 4, \( {\text{F}}\left( { {\text{u}}_{\text{T}} , {\text{u}}_{\text{R}} ,{\text{v}}_{\text{T}} , {\text{v}}_{\text{R}} } \right) = {\text{f}}_{2} \left( {{\text{u}}_{\text{T}} , {\text{v}}_{\text{T}} } \right) * {\text{f}}_{2} \left( {{\text{u}}_{\text{R}} , {\text{v}}_{\text{R}} } \right) \) where \( {\text{f}}_{2} \) is the joint density of a bivariate chi-square distribution. Let \( \frac{{\upsigma_{{1, {\text{T}}}}^{2} {\text{u}}_{\text{T}} }}{{{\text{n}}_{\text{T}}^{ *} ({\text{n}}_{\text{T}} - 1)}} + \frac{{\upsigma_{{1, {\text{R}}}}^{2} {\text{u}}_{\text{R}} }}{{{\text{n}}_{\text{R}}^{ *} ({\text{n}}_{\text{R}} - 1)}} =\uplambda_{1} {\text{u}}_{\text{T}} +\upmu_{1} {\text{u}}_{\text{R}} = {\text{U}} \) and \( \frac{{\upsigma_{{2, {\text{T}}}}^{2} {\text{v}}_{\text{T}} }}{{{\text{n}}_{\text{T}}^{ *} ({\text{n}}_{\text{T}} - 1)}} + \frac{{\upsigma_{{2, {\text{R}}}}^{2} {\text{v}}_{\text{R}} }}{{{\text{n}}_{\text{R}}^{ *} ({\text{n}}_{\text{R}} - 1)}} =\uplambda_{2} {\text{v}}_{\text{T}} +\upmu_{2} {\text{v}}_{\text{R}} = {\text{V}} \), and we want to get the joint distribution of \( {\text{U }} \) and \( {\text{V}} \). The Jacobian transformation matrix is

$$ {\text{Jacobian}}\left[ {\left( {{\text{u}}_{\text{T}} = \frac{{{\text{U}} -\upmu_{1} {\text{u}}_{\text{R}} }}{{\uplambda_{1} }}, {\text{u}}_{\text{R}} , {\text{v}}_{\text{T}} , {\text{v}}_{\text{R}} = \frac{{{\text{V}} -\uplambda_{2} {\text{v}}_{\text{T}} }}{{\upmu_{2} }}} \right) \to \left( {{\text{U}}, {\text{u}}_{\text{R}} ,{\text{v}}_{\text{T}} , {\text{V}}} \right)} \right] = \frac{1}{{\uplambda_{1}\upmu_{2} }} $$

Thus

$$ \begin{aligned} {\text{FF}}\left( {{\text{U}}, {\text{u}}_{\text{R}} , {\text{v}}_{\text{T}} , {\text{V}}} \right) & = {\text{F}}\left( {\frac{{{\text{U}} -\upmu_{1} {\text{u}}_{\text{R}} }}{{\uplambda_{1} }}, {\text{u}}_{\text{R}} , {\text{v}}_{\text{T}} , \frac{{{\text{V}} -\uplambda_{2} {\text{v}}_{\text{T}} }}{{\upmu_{2} }}} \right)\frac{1}{{\uplambda_{1}\upmu_{2} }} \\ & = {\text{f}}_{2} \left( {\frac{{{\text{U}} -\upmu_{1} {\text{u}}_{\text{R}} }}{{\uplambda_{1} }}, {\text{v}}_{\text{T}} |{\text{m}} = {\text{n}}_{\text{T}} - 1} \right) * {\text{f}}_{2} \left( {{\text{u}}_{\text{R}} , \frac{{{\text{V}} -\uplambda_{2} {\text{v}}_{\text{T}} }}{{\upmu_{2} }}|{\text{m}} = {\text{n}}_{\text{R}} - 1} \right)\frac{1}{{\uplambda_{1}\upmu_{2} }} \\ \end{aligned} $$

We then integrate out \( {\text{u}}_{\text{R}} , {\text{v}}_{\text{T}} \), we can get the joint distribution of \( {\text{U}} \) and \( {\text{V}} \)

$$ {{\text{F}}}_{2} \left( {{{\text{U}}}, {{\text{V}}}} \right) = \mathop \smallint \limits_{0}^{{\frac{{\text{V}}}{{\uplambda_{2} }}}} \mathop \smallint \limits_{0}^{{\frac{{\text{U}}}{{\upmu_{1} }}}} {{\text{FF}}}\left( {{{\text{U}}}, {{\text{u}}}_{{\text{R}}} , {{\text{v}}}_{{\text{T}}} , {{\text{V}}}} \right){{\text{du}}}_{{\text{R}}} {{\text{dv}}}_{{\text{T}}} $$

We can get the power function as

$$ {\text{P}}_{2} = \mathop \smallint \limits_{0}^{{\frac{{9\upsigma_{{2.{\text{R}}}}^{2} }}{{4{\text{t}}_{{{\text{df}}_{2}^{ *} , 1 -\upalpha}}^{2} }}}} \mathop \smallint \limits_{0}^{{\frac{{9\upsigma_{{1.{\text{R}}}}^{2} }}{{4{\text{t}}_{{{\text{df}}_{1}^{ *} , 1 -\upalpha}}^{2} }}}} \left\{ {\mathop \smallint \limits_{{{\text{LL}}_{1} \left( {\text{U}} \right)}}^{{{\text{UL}}_{1} \left( {\text{U}} \right)}} \mathop \smallint \limits_{{{\text{LL}}_{2} \left( {\text{V}} \right)}}^{{{\text{UL}}_{2} \left( {\text{V}} \right)}} {\text{f}}_{1} \left( {{\text{x}}_{1} , {\text{x}}_{2} } \right){\text{dx}}_{1} {\text{dx}}_{2} } \right\} \times {\text{F}}_{2} \left( {{\text{U}}, {\text{V}}} \right){\text{dUdV }} $$

where \( {\text{f}}_{1} \left( {{\text{x}}_{1} , {\text{x}}_{2} } \right) = \frac{1}{{2\uppi \uptau _{1}\uptau_{2} \sqrt {1 -\uprho^{ * 2} } }}{ \exp }\left\{ { - \frac{{{\text{x}}_{1}^{2} }}{{2\uptau_{1}^{2} \left( {1 -\uprho^{ * 2} } \right)}} + \frac{{\uprho^{ *} {\text{x}}_{1} {\text{x}}_{2} }}{{\uptau_{1}\uptau_{2} \left( {1 -\uprho^{ * 2} } \right)}} - \frac{{{\text{x}}_{2}^{2} }}{{2\uptau_{2}^{2} \left( {1 -\uprho^{ * 2} } \right)}}} \right\} \) be the joint distribution of the bi-variate normal distribution with mean zero and variance-covariance matrix \( \left[ {\begin{array}{*{20}c} {\uptau_{1}^{2} } & {\uprho^{ *}\uptau_{1}\uptau_{2} } \\ {\uprho^{ *}\uptau_{1}\uptau_{2} } & {\uptau_{2}^{2} } \\ \end{array} } \right] \).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, T., Tsong, Y., Shen, M. (2019). Sample Size Consideration for Equivalent Test of Tier-1 Quality Attributes for Analytical Biosimilarity Assessment. In: Liu, R., Tsong, Y. (eds) Pharmaceutical Statistics. MBSW 2016. Springer Proceedings in Mathematics & Statistics, vol 218. Springer, Cham. https://doi.org/10.1007/978-3-319-67386-8_3

Download citation

Publish with us

Policies and ethics

Navigation