Memory-Saving Technique for the Sakurai–Sugiura Eigenvalue Solver Using the Shifted Block Conjugate Gradient Method

  • Conference paper
  • First Online:
Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing (EPASA 2015)

Abstract

In recent years, a numerical quadrature-based sparse eigensolver—the so-called Sakurai–Sugiura method—and its variants have attracted attention because of their highly coarse-grained parallelism. In this paper, we propose a memory-saving technique for a variant of the Sakurai–Sugiura method. The proposed technique can be utilized when inner linear systems are solved with the shifted block conjugate gradient method. Using our technique, eigenvalues and residual norms can be obtained without the explicit need to compute the eigenvector. This technique saves a considerable amount of memory space when eigenvectors are unnecessary. Our technique is also beneficial in cases where eigenvectors are necessary, because the residual norms of the target eigenpairs can be cheaply computed and monitored during each iteration step of the inner linear solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Birk, S., Frommer, A.: A deflated conjugate gradient method for multiple right hand sides and multiple shifts. Numer. Algorithms 67(3), 507–529 (2013). https://doi.org/10.1007/s11075-013-9805-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Dubrulle, A.A.: Retooling the method of block conjugate gradients. Electron. Trans. Numer. Anal. 12, 216–233 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Futamura, Y., Sakurai, T., Furuya, S., Iwata, J.I.: Efficient algorithm for linear systems arising in solutions of eigenproblems and its application to electronic-structure calculations. In: Daydé, M., Marques, O., Nakajima, K. (eds.) High Performance Computing for Computational Science - VECPAR 2012. Lecture Notes in Computer Science, vol. 7851, pp. 226–235. Springer, Berlin/Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-38718-0_23

    Google Scholar 

  4. Ikegami, T., Sakurai, T.: Contour integral eigensolver for non-Hermitian systems: a Rayleigh-Ritz-type approach. Taiwan. J. Math. 14, 825–837 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ikegami, T., Sakurai, T., Nagashima, U.: A filter diagonalization for generalized eigenvalue problems based on the Sakurai-Sugiura projection method. J. Comput. Appl. Math. 233(8), 1927–1936 (2010). https://doi.org/10.1016/j.cam.2009.09.029

    Article  MathSciNet  MATH  Google Scholar 

  6. Imakura, A., Du, L., Sakurai, T.: A block Arnoldi-type contour integral spectral projection method for solving generalized eigenvalue problems. Appl. Math. Lett. 32, 22–27 (2014). https://doi.org/10.1016/j.aml.2014.02.007. http://www.sciencedirect.com/science/article/pii/S0893965914000421

  7. Iwata, J.I., Takahashi, D., Oshiyama, A., Boku, T., Shiraishi, K., Okada, S., Yabana, K.: A massively-parallel electronic-structure calculations based on real-space density functional theory. J. Comput. Phys. 229(6), 2339–2363 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mizusaki, T., Kaneko, K., Honma, M., Sakurai, T.: Filter diagonalization of shell-model calculations. Phys. Rev. C 82(2), 10 (2010)

    Article  Google Scholar 

  9. Ohno, H., Kuramashi, Y., Sakurai, T., Tadano, H.: A quadrature-based eigensolver with a Krylov subspace method for shifted linear systems for Hermitian eigenproblems in lattice QCD. JSIAM Lett. 2, 115–118 (2010). http://ci.nii.ac.jp/naid/130000433719/en/

    Article  MathSciNet  MATH  Google Scholar 

  10. O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear Algebra Appl. 29, 293–322 (1980). https://doi.org/10.1016/0024-3795(80)90247-5. Special Volume Dedicated to Alson S. Householder

  11. Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79, 115112 (2009). https://doi.org/10.1103/PhysRevB.79.115112

    Article  Google Scholar 

  12. Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using numerical integration. J. Comput. Appl. Math. 159(1), 119–128 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sakurai, T., Tadano, H.: CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems. Hokkaido Math. J. 36, 745–757 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sakurai, T., Tadano, H., Futamura, Y.: Efficient parameter estimation and implementation of a contour integral-based eigensolver. J. Algorithms Comput. Technol. 7, 249–269 (2013)

    Article  MathSciNet  Google Scholar 

  15. Shimizu, N.: Nuclear shell-model code for massive parallel computation, “kshell”. ar**v:1310.5431 [nucl-th] (2013)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Noritaka Shimizu for giving us a matrix derived from a nuclear shell-model. The authors wish to thank Dr. Jun-Ichi Iwata for giving us a matrix derived from a real-space density functional calculation. The authors are grateful to Dr. Hiroshi Ohno for his valuable comments and for providing us a matrix from quantum chromodynamics. The authors would like to thank the anonymous reviewers for their helpful comments and suggestions. This work was supported in part by JST/CREST and MEXT KAKENHI (Grant Nos. 25104701, 25286097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Futamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Futamura, Y., Sakurai, T. (2017). Memory-Saving Technique for the Sakurai–Sugiura Eigenvalue Solver Using the Shifted Block Conjugate Gradient Method. In: Sakurai, T., Zhang, SL., Imamura, T., Yamamoto, Y., Kuramashi, Y., Hoshi, T. (eds) Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing. EPASA 2015. Lecture Notes in Computational Science and Engineering, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-62426-6_13

Download citation

Publish with us

Policies and ethics

Navigation