Bacterial Cellulose Nanoribbons: A New Bioengineering Additive for Biomedical and Food Applications

  • Chapter
  • First Online:
Industrial Applications of Renewable Biomass Products

Abstract

Cellulose nanostructures obtained from bacterial sources can be a valuable nanomaterial for biomedical and food applications. In this work the alternatives of cellulose nanoribbons produced by a Colombian-isolated species called Komagataeibacter medellinensis (Gluconacetobacter medellinensis) as potential additive for developed composites are explored. In this case, several agro-industrial residues such as pineapple peel juice or sugar cane juice were used such as culture media. Different materials were produced using in situ fermentation process throughout biosynthesis of cellulose nanoribbons, solvent casting technique, or inclusion during polymerization process. Different mechanical and physical properties as well as biomedical and environmental tests were evaluated. Results indicate that the incorporation of cellulose nanoribbons can improve mechanical and thermal properties of nanocomposites with respect to neat matrices. Environmental tests suggest that these materials are promising candidates in the development of biomedical devices or food ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson J, Baird P, Davis R et al (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205

    Article  Google Scholar 

  • Bäckdahl H, Helenius G, Bodin A et al (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149

    Article  Google Scholar 

  • Badui Dergal S, Sara D, Valdés E et al (2006) Química de los alimentos, Cuarta edición edn. Pearson Educación, México, p 703

    Google Scholar 

  • Cai Z, Kim J (2009) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91

    Article  Google Scholar 

  • Castro C, Zuluaga R, Putaux J-L et al (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102

    Article  CAS  Google Scholar 

  • Castro C, Cleenwerck I, Trcek J et al (2013) Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar. Int J Syst Evol Microbiol 63:1119–1125

    Article  CAS  Google Scholar 

  • Castro C, Vesterinen A, Zuluaga R et al (2014) In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking. Cellulose 21:1–10

    Article  Google Scholar 

  • Czaja W, Kawecki M, Wróblewski P et al (2007a) Biomedical applications of microbial cellulose in burn wound recovery. In: Brown RMJ, Saxena IM (eds) Cellulose: molecular and structural biology. Springer, Dordrecht, pp 307–321

    Chapter  Google Scholar 

  • Czaja W, Young D, Kawecki M et al (2007b) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    Article  CAS  Google Scholar 

  • Dellaglio F, Cleenwerck I, Felis G et al (2005) Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 55:2365–2370

    Article  CAS  Google Scholar 

  • Dong H, Snyder J (2013) Nanocellulose foam containing active ingredients. US Patent No. US 20130330417 A1

    Google Scholar 

  • Fang F, Orend G, Watanabe N et al (1996) Dependence of cyclin E-CDK2 kinase activity on cell anchorage. Science 271:499–502

    Article  CAS  Google Scholar 

  • Fernandes S, Oliveira L, Freire C et al (2009) Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem 11:2023–2029

    Article  CAS  Google Scholar 

  • Fink H, Gustafsson L, Bodin A et al (2007) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97:425–434

    Article  Google Scholar 

  • Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442

    Article  CAS  Google Scholar 

  • Gao C, Wan Y, Yang C et al (2010) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18:139–145

    Article  Google Scholar 

  • Grande C, Torres F, Gomez C et al (2008) Morphological characterisation of bacterial cellulose-starch nanocomposites. Polym Polym Compos 16:181–185

    CAS  Google Scholar 

  • Grande C, Torres F, Gomez C et al (2009) Development of self-assembled bacterial cellulose–starch nanocomposites. Mater Sci Eng C 29:1098–1104

    Article  CAS  Google Scholar 

  • Hakkinen K, Harunaga J, Doyle A et al (2011) Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng Part A 17:713–724

    Article  CAS  Google Scholar 

  • Hassan C, Peppas N (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479

    Article  CAS  Google Scholar 

  • Huang H, Chen L-C, Lin S-B et al (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101:6084–6091

    Article  CAS  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose — a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  • Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345

    Article  CAS  Google Scholar 

  • Kirkland J (2012) Niacin requirements for genomic stability. Mutat Res 733:14–20

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F et al (2009) Nanocellulose materials – different cellulose, different functionality. Macromol Symp 280:60–71

    Article  CAS  Google Scholar 

  • Leal-Egaña A, Scheibel T (2010) Silk-based materials for biomedical applications. Biotechnol Appl Biochem 55:155–167

    Article  Google Scholar 

  • Lee Y, Kouvroukoglou S, McIntire L et al (1995) A cellular automaton model for the proliferation of migrating contact-inhibited cells. Biophys J 69:1284–1298

    Article  CAS  Google Scholar 

  • Lina F, Yue Z, ** Z et al (2009) Bacterial cellulose for skin repair materials. In: Fazel-Rezai R (ed) Biomedical engineering – frontiers and challenges. Rijeka, Intech, pp 249–274

    Google Scholar 

  • Montoya Ú, Zuluaga R, Castro C et al (2012) Development of composite films based on thermoplastic starch and cellulose microfibrils from colombian agroindustrial wastes. J Thermoplast Compos Mater 27:413–426

    Article  Google Scholar 

  • Moreschi E, Matos J, Almeida-Muradian L (2009) Thermal analysis of vitamin PP Niacin and niacinamide. J Therm Anal Calorim 98:161–164

    Article  CAS  Google Scholar 

  • Okiyama A, Motoki M, Yamanaka S (1993) Bacterial cellulose IV. Application to processed foods. Food Hydrocoll 6:503–511

    Article  CAS  Google Scholar 

  • Osorio M, Ortiz I, Caro G, Restrepo L et al (2014a) Matrices nanocompuestas de alcohol de polivinilo (PVA)/celulosa bacteriana (CB) para el crecimiento celular y la ingenieria de tejidos. Rev Colomb Mater 1:338–346

    Google Scholar 

  • Osorio M, Restrepo D, Zuluaga R et al (2014b) Synthesis of thermoplastic starch-bacterial cellulose nanocomposites via in situ fermentation. J Braz Chem Soc 25:1607–1613

    CAS  Google Scholar 

  • Osorio M, Zuluaga R, Gañán P et al (2014c) Protección térmica de vitamina B3 con celulosa bacteriana y su aporte de fibra dietaría. Rev Fac Nac Agron 67:634–637

    Google Scholar 

  • Parant N (2005) Elaboración de Gel Celulósico (nata) Producido por Acetobacter xylinum Sobre Jugo de Arándano (Vaccinium corymbosum). Univ. Austral Chile. Universidad Austral de Chile, Valdivia, p 47

    Google Scholar 

  • Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118:702–711

    Article  CAS  Google Scholar 

  • Rouse J, van Dyke M (2010) A review of keratin-based biomaterials for biomedical applications. Materials (Basel) 3:999–1014

    Article  Google Scholar 

  • Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R et al (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 22:1194–1199

    Article  CAS  Google Scholar 

  • Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129

    Article  CAS  Google Scholar 

  • Shi Z, Zhang Y, Phillips G et al (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545

    Article  CAS  Google Scholar 

  • Torres F, Commeaux S, Troncoso O (2012) Biocompatibility of bacterial cellulose based biomaterials. J Funct Biomater 3:864–878

    Article  CAS  Google Scholar 

  • Velásquez-Cock J, Ramírez E, Betancourt S et al (2014) Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose. Int J Biol Macromol 69:208–213

    Article  Google Scholar 

  • Wan W, Guhados G (2013) Nanosilver coated bacterial cellulose. Patent: US 20130211308 A1

    Google Scholar 

  • Wan W, Hutter J, Millon L et al (2006) Bacterial cellulose and its nanocomposites for biomedical applications. In: Oksman K (ed) Cellulose nanocomposites. American Chemical Society, Washington, DC, pp 221–241

    Chapter  Google Scholar 

  • Wang J, Gao C, Zhang Y et al (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218

    Article  Google Scholar 

  • Yamada Y (2014) Transfer of Gluconacetobacter kakiaceti, Gluconacetobacter medellinensis and Gluconacetobacter maltaceti to the genus Komagataeibacter as Komagataeibacter kakiaceti comb. nov., Komagataeibacter medellinensis comb. nov. and Komagataeibacter maltaceti comb. Int J Syst Evol Microbiol 64:1670–1672

    Article  Google Scholar 

  • Zaborowska M, Bodin A, Bäckdahl H et al (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gañán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Osorio, M. et al. (2017). Bacterial Cellulose Nanoribbons: A New Bioengineering Additive for Biomedical and Food Applications. In: Goyanes, S., D’Accorso, N. (eds) Industrial Applications of Renewable Biomass Products. Springer, Cham. https://doi.org/10.1007/978-3-319-61288-1_6

Download citation

Publish with us

Policies and ethics

Navigation