Application of Gold Nanorods in Cardiovascular Science

  • Chapter
  • First Online:
Anisotropic and Shape-Selective Nanomaterials

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Cardiovascular disease is a significant global Cardiovascular disease is a significant global health problem. Effectively treating it and exercise, but also demands the development of novel tools for rapid diagnosis and new therapeutics for treatment. The field of nanomaterials is making significant contributions to multiple health care problems in the areas of disease detection, imaging and drug delivery. Gold nanoparticles are particularly promising due to their ease of synthesis, biocompatibility and unique optical properties. In particular, gold nanorods having received much attention for their potential in the diagnosis and treatment of cancer, are now being examined for other biomedical applications. This chapter highlights efforts using gold nanorods in cardiovascular research in such areas as detection of cardiovascular disease, understanding cardiac cell response to nanomaterials and the ability of gold nanorods to alter the mechanical properties of model tissue constructs and cardiac valves .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization. 2014. Global status report on noncommunicable diseases, 9–20. Geneva: WHO.

    Google Scholar 

  2. Jain, A., P. Kesharwani, N.K. Garg, A. Jain, P. Nirbhavane, N. Dwivedi, S. Banerjee, A.K. Iyer, and M.C.I.M. Amin. 2015. Nano-constructed carriers loaded with antioxidant: Boon for cardiovascular system. Current Pharmaceutical Design 21: 4456–4464.

    Article  CAS  Google Scholar 

  3. Sharma, P.A., R. Maheshwari, M. Tekade, and R.K. Tekade. 2015. Nanomaterial based approaches for the diagnosis and therapy of cardiovascular diseases. Current Pharmaceutical Design 21: 4465–4478.

    Article  CAS  Google Scholar 

  4. Behera, S.S., K. Pramanik, and M.K. Nayak. 2015. Recent advancement in the treatment of cardiovascular diseases: Conventional therapy to nanotechnology. Current Pharmaceutical Design 21: 4479–4497.

    Article  CAS  Google Scholar 

  5. Sundar, D.S., M.G. Antoniraj., C.S. Kumar., S.S. Mohapatra., N.N. Houreld., K. Ruckmani. 2016. Recent trends of biocompatible and biodegradable nanoparticles in drug delivery: A review. Current Medicinal Chemistry 23 (32): 3730-3751 (doi:10.2174/0929867323666160607103854).

  6. Nitta, S.K., and K. Numata. 2013. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. International Journal of Molecular Sciences 14: 1629–1654.

    Google Scholar 

  7. Padmanabhan, P., A. Kumar, S. Kumar, R. Chaudhary, and B. Gulyas. 2016. Nanoparticles in practice for molecular-imaging applications: An overview. Acta Biomaterialia 41: 1–16.

    Article  CAS  Google Scholar 

  8. Zhu, D., F. Liu, L. Ma, D. Liu, and Z. Wang. 2013. Nanoparticle-based systems for T1-weighted magnetic resonance imaging contrast agents. International Journal of Molecular Sciences 14: 10591–10607.

    Article  Google Scholar 

  9. Uusitalo, L.M., and N. Hempel. 2012. Recent advances in intracellular and in vivo ROS sensing: Focus on nanoparticle and nanotube applications. International Journal of Molecular Sciences 13: 10660–10679.

    Article  CAS  Google Scholar 

  10. Wang, J. 2005. Nanomaterial-based amplified transduction of biomolecular interactions. Small 1: 1036–1043.

    Article  CAS  Google Scholar 

  11. Wang, J., and J. Qiu. 2016. A review of organic nanomaterials in photothermal cancer therapy. Cancer Research Frontiers 2: 67–84.

    Google Scholar 

  12. Jabeen, F., M. Najam-ul-Haq, R. Javeed, C.W. Huck, and G.K. Bonn. 2014. Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules 19: 20580–20593.

    Article  Google Scholar 

  13. Chen, G., I. Roy, C. Yang, and P. Prasad. 2016. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chemical Reviews 116: 2826–2885.

    Article  CAS  Google Scholar 

  14. Dykman, L., and N. Khlebtsov. 2012. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chemical Society Reviews 41: 2256–2282.

    Article  CAS  Google Scholar 

  15. Dreaden, E.C., A.M. Alkilany, X. Huang, C.J. Murphy, and M.A. El-Sayed. 2012. The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews 41: 2740–2779.

    Article  CAS  Google Scholar 

  16. Ostdiek, A.M., J.R. Ivey, S.A. Hansen, R. Gopaldas, and S.A. Grant. 2016. Feasibility of a nanomaterial-tissue patch for vascular and cardiac reconstruction. Journal of Biomedical Materials Research B 104: 449–457.

    Article  CAS  Google Scholar 

  17. Baei, P., S. Jalili-Firoozinezhad, S. Rajabi-Zeleti, M. Tafazzoli-Shadpour, H. Baharvand, and N. Aghdami. 2016. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Materials Science and Engineering C 63: 131–141.

    Article  CAS  Google Scholar 

  18. Yang, C., A. Tian, and Z. Li. 2016. Reversible cardiac hypertrophy induced by PEG-coated gold nanoparticles in mice. Scientific Reports 6: 20203.

    Article  CAS  Google Scholar 

  19. Liu, G., M. Qi, Y. Zhang, C. Cao, and E.M. Goldys. 2016. Nanocomposites of gold nanoparticles and graphene oxide towards a stable label-free electrochemical immunosensor for detection of cardiac marker troponin-I. Analytica Chimica Acta 909: 1–8.

    Article  CAS  Google Scholar 

  20. Sridhar, S., J.R. Venugopal, R. Sridhar, and S. Ramakrishna. 2015. Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids and Surfaces B 134: 346–354.

    Article  CAS  Google Scholar 

  21. Payam, B., S. Jalili-Firoozinezhad, S. Rajabi-Zeleti, M. Tafazzoli-Shadpour, H. Baharvand, and N. Aghdami. 2016. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Materials Sciences and Engineering C 63: 131–141.

    Article  Google Scholar 

  22. Fleischer, S., M. Shevach, R. Feiner, and T. Dvir. 2014. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues. Nanoscale 6: 9410–9414.

    Article  CAS  Google Scholar 

  23. Huang, X., I.H. El-Sayed, W. Qian, and M.A. El-Sayed. 2006. Cancer cell imaging and photothermal therapy in the near-infrared region using gold nanorod. Journal of the American Chemical Society 128 (6): 2115–2120.

    Article  CAS  Google Scholar 

  24. Wackenhut, F., A.V. Failla, and A.J. Meixner. 2015. Single gold nanorods as optical probes for spectral imaging. Analytical and Bioanalytical Chemistry 407: 4029–4034.

    Article  CAS  Google Scholar 

  25. Krishnan, S., Z. DiagaQin, Y. Wang, J. Randrianalisoa, V. Raeesi, W.C. Chan, W. Linski, and J.C. Bischof. 2016. Quantitative comparison of photothermal heat generation between gold nanospheres and nanorods. Scientific Reports 6: 29836.

    Article  Google Scholar 

  26. Antman, E., J.P. Bassand, W. Klein, M. Ohman, J.L.L. Sendon, L. Ryden, M. Simoons, and M. Tendera. 2000. Myocardial infarction redefined—A consensus document of the joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Journal of American College of Cardiology 36: 959–969.

    Article  Google Scholar 

  27. Apple, F.S., A.H.B. Wu, and A.S. Jaffe. 2002. European Society of Cardiology and American College of Cardiology guidelines for redefinition of myocardial infarction: How to use existing assays clinically and for clinical trials. American Heart Journal 144: 981–986.

    Article  Google Scholar 

  28. Murphy, C.J., T.K. Sau, A. Gole, and C.J. Orendorff. 2005. Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bulletin 30: 349–355.

    Article  CAS  Google Scholar 

  29. El-Sayed, M.A. 2001. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research 34: 257–264.

    Article  CAS  Google Scholar 

  30. Guo, Z.R., C.R. Gu, X. Fan, Z.P. Bian, H.F. Wu, D. Yang, N. Gu, and J.N. Zhang. 2009. Fabrication of anti-human cardiac troponin I immunogold nanorods for sensing acute myocardial damage. Nanoscale Research Letters 4: 1428–1433.

    Article  CAS  Google Scholar 

  31. Tang, L., and J. Casas. 2014. Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis. Biosensors and Bioelectronics 61: 70–75.

    Article  CAS  Google Scholar 

  32. Tadepalli, S., Z. Kuang, Q. Jiang, K.K. Liu, M.A. Fisher, J.J. Morrissey, E.D. Kharasch, J.M. Slocik, R.R. Naik, and S. Singamaneni. 2015. Peptide functionalized gold nanorods for the sensitive detection of a cardiac biomarker using plasmonic paper devices. Scientific Reports 5: 16206.

    Article  CAS  Google Scholar 

  33. Apple, F.S., R. Ler, and M.M. Murakami. 2012. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clinical Chemistry 58: 1574–1581.

    Article  CAS  Google Scholar 

  34. Ankri, R., D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E.I. Lev. 2014. Gold Nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements. Nano Letters 14: 2681–2687.

    Article  CAS  Google Scholar 

  35. Ankri, R., S. Melzer, A. Tarnok, and D. Fixler. 2015. Detection of gold nanorods uptake by macrophages using scattering analyses combined with diffusion reflection measurements as a potential took for in vivo atherosclerosis tracking. International Journal of Nanomedicine 10: 4437–4446.

    CAS  Google Scholar 

  36. Huang, H., F. Liu, S. Huang, S. Yuan, B. Liao, S. Yi, Y. Zeng, and P.K. Chu. 2012. Sensitive and simultaneous detection of different disease markers using multiplexed gold nanorods. Analytica Chimica Acta 755: 108–114.

    Article  CAS  Google Scholar 

  37. Truong, P.L., B.W. Kiim, and S.J. Sim. 2012. Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker. Lab on a Chip 12: 1102–1109.

    Article  CAS  Google Scholar 

  38. Huang, H., S. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, and Y. Chen. 2009. Label-free optical biosensors based on Au2S-coated gold Nanorods. Biosensors and Bioelectronics 24: 3025–3029.

    Article  CAS  Google Scholar 

  39. Mayer, K.M., S. Lee, H. Liao, B.C. Rostro, A. Fuentes, P.T. Scully, C.L. Nehl, and J.H. Hafner. 2008. A label-free immunoassay based upon localized surface plasmon resonance of gold Nanorods. ACS Nano 2: 687–692.

    Article  CAS  Google Scholar 

  40. Orendorff, C.J., S.C. Baxter, E.C. Goldsmith, and C.J. Murphy. 2005. Light scattering from gold nanorods: Tracking material deformation. Nanotechnology 16: 2601–2605.

    Article  CAS  Google Scholar 

  41. Fuseler, J.W., C.F. Millette, J.M. Davis, and W. Carver. 2007. Fractal and image analysis of morphological changes in the actin cytoskeleton of neonatal cardiac fibroblasts in response to mechanical stretch. Microscopy and Microanalysis 13: 133–143.

    Article  CAS  Google Scholar 

  42. Kamkin, A., I. Liseleva, I. Lozinsky, K.D. Wagner, G. Isenberg, and H. Scholz. 2005. The role of mechanosensitive fibroblasts in the heart. In Mechanosensitivity in cells and tissues, ed. Kamkin, A., I. Kiseleva. Moscow: Academia.

    Google Scholar 

  43. Atance, J., M.J. Yost, and W. Carver. 2004. Influence of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch. Journal of Cellular Physiology 200: 377–386.

    Article  CAS  Google Scholar 

  44. Carver, W., M.L. Nagpal, M. Nachtigal, T.K. Borg, and L. Terracio. 1991. Collagen expression in mechanically stimulated cardiac fibroblasts. Circulation Research 69: 116–122.

    Article  CAS  Google Scholar 

  45. Stone, J.W., P.N. Sisco, E.C. Goldsmith, S.C. Baxter, and C.J. Murphy. 2007. Using gold nanorods to probe cell-induced collagen deformation. NanoLetters 7: 116–119.

    Article  CAS  Google Scholar 

  46. Chernak, D.J., P.N. Sisco, E.C. Goldsmith, S.C. Baxter, and C.J. Murphy. 2013. High aspect ratio gold Nanorods: Their synthesis and application to image cell-induced strain fields in collagen films. Methods of Molecular Biology 1026: 1–20.

    Article  CAS  Google Scholar 

  47. Wilson, C.G., J.W. Stone, V. Fowlkes, M.O. Morales, C.J. Murphy, S.C. Baxter, and E.C. Goldsmith. 2011. Age-dependent expression of collagen receptors and deformation of type I collagen substrates by rat cardiac fibroblasts. Microscopy and Microanalysis 17: 555–562.

    Article  CAS  Google Scholar 

  48. Grinnell, F. 2003. Fibroblast biology in three-dimensional collagen matrices. Trends in Cell Biology 13: 264–269.

    Article  CAS  Google Scholar 

  49. Carver, W., I. Molano, T.A. Reaves, T.K. Borg, and L. Terracio. 1995. Role of alpha 1 beta 1 integrin complex in collagen gel contraction in vitro by fibroblasts. Journal of Cellular Physiology 165: 425–437.

    Article  CAS  Google Scholar 

  50. Baxter, S.C., M.O. Morales, and E.C. Goldsmith. 2008. Adaptive changed in cardiac fibroblast morphology and collagen organization as a result of mechanical environment. Cell Biochemistry and Biophysics 51: 33–44.

    Article  CAS  Google Scholar 

  51. Law, B.A., and W.E. Carver. 2013. Activation of cardiac fibroblast by ethanol is blocked by TGF– inhibition. Alcoholism, Clinical and Experimental Research 37: 1286–1294.

    Article  CAS  Google Scholar 

  52. Svystonyuk, D.A., J.M. Nqu, H.E. Mewhort, B.D. Lipon, G. Teng, D.G. Guzzardi, G. Malik, D.D. Belke, and P.W. Fedak. 2015. Fibroblast growth factor-2 regulates human cardiac myofibroblast-mediated extracellular matrix remodeling. Journal of Translational Medicine 13: 147–157.

    Article  Google Scholar 

  53. Sisco, P.N., C.G. Wilson, E. Mironova, S.C. Baxter, C.J. Murphy, and E.C. Goldsmith. 2008. The effect of gold Nanorods on cell-mediated collagen remodeling. NanoLetters 8: 3409–3412.

    Article  CAS  Google Scholar 

  54. Borg, K.T., W. Burgess, L. Terracio, and T.K. Borg. 1997. Expression of metalloproteases by cardiac myocytes and fibroblasts in vitro. Cardiovascular Pathology 6: 261–269.

    Article  CAS  Google Scholar 

  55. Lundqvist, M., J. Stigler, G. Elia, I. Lynch, T. Cedervall, et al. 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences 105: 14265–14270.

    Article  CAS  Google Scholar 

  56. Walczyk, D., F.B. Bombelli, M.P. Monopoli, I. Lynch, and K.A. Dawson. 2010. What the cell sees in bionanoscience. Journal of the American Chemical Society 132: 5761–5768.

    Article  CAS  Google Scholar 

  57. Monopoli, M.P., D. Walczyk, A. Campbell, G. Elia, I. Lynch, et al. 2011. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. Journal of the American Chemical Society 133: 2525–2534.

    Article  CAS  Google Scholar 

  58. Maiorano, G., S. Sabella, B. Sorce, V. Brunetti, M.A. Malvindi, et al. 2010. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4: 7481–7491.

    Article  CAS  Google Scholar 

  59. Sisco, P.N., C.G. Wilson, D. Chernak, J.C. Clark, E.M. Grzincic, K. Ako-Asare, E.C. Goldsmith, and C.J. Murphy. 2014. Adsorption of cellular proteins to polyelectrolyte-functionalized gold nanorods: A mechanism for nanoparticle regulation of cell phenotype. PLoS ONE 9: e86670.

    Article  Google Scholar 

  60. Wilson, C.G., P.N. Sisco, F.A. Gadala-Maria, C.J. Murphy, and E.C. Goldsmith. 2009. Polyelectrolyte-coated gold nanorods and their interaction with type I collagen. Biomaterials 30: 5639–5648.

    Article  CAS  Google Scholar 

  61. Wilson, C.G., P.N. Sisco, E.C. Goldsmith, and C.J. Murphy. 2009. Glycosaminoglycan-functionalized gold nanorods: Interactions with cardiac cells and type I collagen. Journal of Materials Chemistry 19: 6332–6340.

    Article  CAS  Google Scholar 

  62. Hribar, K.C., K. Meggs, J. Lui, W. Zhu, X. Qu, and S. Chen. 2015. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser. Scientific Reports 5: 17203.

    Article  CAS  Google Scholar 

  63. Ganji, Y., Q. Li, E.S. Quabius, M. Bottner, C. Selhuber-Unkel, and M. Kasra. 2016. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. Materials Science and Engineering C 59: 10–18.

    Article  CAS  Google Scholar 

  64. Fedak, P.W.M., F.M. McCarthy, and R.O. Bonow. 2008. Evolving concepts and technologies in mitral valve repair. Circulation 117: 963–974.

    Article  Google Scholar 

  65. Grande-Allen, K.J., J.E. Barber, K.M. Klatka, P.L. Houghtaling, I. Vesely, C.S. Moravec, and P.M. McCarthy. 2005. Journal of Thoracic and Cardiovascular Surgery 130: 783–790.

    Article  Google Scholar 

  66. Grande-Allen, K.J., A.G. Borowski, R.W. Troughton, P.L. Houghtaling, N.R. DiPaola, C.S. Moravec, I. Vesely, and B.P. Griffin. 2005. Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements. Journal of the American College of Cardiology 45: 54–61.

    Article  CAS  Google Scholar 

  67. Rabkin, E., M. Aikawa, J.R. Stone, Y. Fukumoto, P. Libby, and F.J. Schoen. 2001. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104: 2525–2532.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Institutes of Health (HL097214) and the Mid-Atlantic Affiliate of the American Heart Association (13GRNT17070086) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edie C. Goldsmith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Goldsmith, J.G., L’Ecuyer, H., Dean, D., Goldsmith, E.C. (2017). Application of Gold Nanorods in Cardiovascular Science. In: Hunyadi Murph, S., Larsen, G., Coopersmith, K. (eds) Anisotropic and Shape-Selective Nanomaterials. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-59662-4_14

Download citation

Publish with us

Policies and ethics

Navigation