On-line Scheduling with a Monotonous Subsequence Constraint

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10336))

Included in the following conference series:

  • 599 Accesses

Abstract

In this paper, we study a new on-line scheduling problem that each server has to process a monotonous request subsequence. The customer requests are released over-list, and the operator has to decide whether or not to accept the current request and arrange it to a server immediately. The goal of this paper is to find a strategy which accepts the maximal requests. When the number of servers k is less than that of the request types m, we give several lower bounds for this problem. Also, we present the optimal strategy for \( k=1 \) and \( k=2 \) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zervas, G., Proserpio, D., Byers, J.: The rise of the sharing economy: estimating the impact of Airbnb on the hotel industry. 18 November 2016. Boston U. School of Management Research Paper No. 2013–2016

    Google Scholar 

  2. Fredman, M.L.: On computing the length of longest increasing subsequences. Discret. Math. 11(1), 29–35 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deorowicz, S.: An algorithm for solving the longest increasing circular subsequence problem. Inf. Process. Lett. 109(12), 630–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Romik, D.: The Surprising Mathematics of Longest Increasing Subsequences. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  5. Albert, M.H., Golynski, A., Hamel, A.M., et al.: Longest increasing subsequences in sliding windows. Theoret. Comput. Sci. 321(2–3), 405–414 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arlotto, A., Nguyen, V.V., Steele, J.M.: Optimal online selection of a monotone subsequence: a central limit theorem. Stochast. Process. Appl. 125(9), 3596–3622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nagarajan, V., Sviridenko, M.: Tight bounds for permutation flow shop scheduling. Math. Oper. Res. 34(2), 417–427 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sitters, R.: Competitive analysis of preemptive single-machine scheduling. Oper. Res. Lett. 38(6), 585–588 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nther, E., Maurer, O., Megow, N., et al.: A new approach to online scheduling: approximating the optimal competitive ratio. In: Twenty-Fourth ACM-SIAM Symposium on Discrete Algorithms, pp. 118–128. Society for Industrial and Applied Mathematics (2012)

    Google Scholar 

  10. Karhi, S., Shabtay, D.: On the optimality of the TLS algorithm for solving the online-list scheduling problem with two job types on a set of multipurpose machines. J. Comb. Optim. 26(1), 198–222 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the NSFC (Grant No. 71601152), and by the China Postdoctoral Science Foundation (Grant No. 2016M592811).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelin Luo .

Editor information

Editors and Affiliations

A Appendix

A Appendix

The analysis of ratio \( \frac{OPT(R)}{A(R)}\) in Theorem 1. Case 2.2.

As we already know, \( A(R)= 2k_{1}+2max\{k_{2},k_{3}\} +m \cdot (k- k_{1}-max\{k_{2},k_{3}\} ) \) and \( OPT(R)= k\cdot m \) for all \( m>k>2 \), where \( k_{2}+k_{3}+2k_{1}=k_{sum} \) \( (k< k_{sum}\le 2k) \). To make the ratio of \( \frac{OPT(R)}{A(R)} \) easier to solve, we analyse

$$\begin{aligned}&\frac{A(R)}{OPT(R)}=\frac{2k_{1}+2max\{k_{2},k_{3}\} +m\cdot (k- k_{1}-max\{k_{2},k_{3}\} )}{k\cdot m} \end{aligned}$$
(5.1)
$$\begin{aligned}&\nonumber =\frac{k_{1}\cdot (2-m)+max\{k_{2},k_{3}\}\cdot (2-m) +m\cdot k}{k\cdot m}\\&\nonumber =1+C \\&C= \frac{k_{1}\cdot (2-m)+max\{k_{2},k_{3}\}\cdot (2-m)}{k\cdot m} . \end{aligned}$$
(5.2)

We analyse the change of C with respect to \( k_{1} \), \( max\{k_{2},k_{3}\} \) and \( k_{1}+ max\{k_{2},k_{3}\} \), respectively.

$$\begin{aligned}&\frac{\partial C}{\partial k_{1}}=\frac{\partial C}{\partial max\{k_{2},k_{3}\}}=\frac{\partial C}{\partial k_{1}+max\{k_{2},k_{3}\}}= \frac{(2-m)\cdot k\cdot m}{(k\cdot m)^{2}} \\&\nonumber <0 \text { (Because } m>k>2 ). \end{aligned}$$
(5.3)

Because \( k_{2}+k_{3}+2k_{1}=k_{sum} \) \( (k< k_{sum}\le 2k) \) and 5.3, we have:

$$\begin{aligned}&C \le \frac{\frac{k+1}{2}\cdot (2-m)}{m\cdot k} \nonumber = -\frac{1}{3} \text { (Because } m>k>2 ), \end{aligned}$$

and

$$\begin{aligned}&\frac{OPT(R)}{A(R)}\ge \frac{1}{1-\frac{1}{3}}\\&\nonumber \ge \frac{3}{2} \text { (Because } m>k>2 ), \end{aligned}$$
(5.4)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Luo, K., Xu, Y., Zhang, H., Luo, W. (2017). On-line Scheduling with a Monotonous Subsequence Constraint. In: **ao, M., Rosamond, F. (eds) Frontiers in Algorithmics. FAW 2017. Lecture Notes in Computer Science(), vol 10336. Springer, Cham. https://doi.org/10.1007/978-3-319-59605-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59605-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59604-4

  • Online ISBN: 978-3-319-59605-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation