Synthesis of Rigid π Organic Molecular Architectures and Their Applications in Single-Molecule Measurement

  • Conference paper
  • First Online:
Molecular Architectonics

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

Abstract

Large polycyclic π-system compounds such as higher phenacenes, fused azulenes, and pyrrole-containing compounds such as porphyrinoids and cyclopyrroles were prepared to measure their physical and electric properties by scanning tunneling microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, A.S.I., William, J.M., Brian, M.F., Lois, M.B.Y.: A tetra-substituted chrysene: orientation of multiple electrophilic substitution and use of a tetra-substituted chrysene as a blue emitter for OLEDs. Chem. Commun. (20), 2319–2321 (2008). doi:10.1039/B715386D

  2. Wang, X., Zhi, L., Tsao, N., Tomović, Ž., Li, J., Müllen, K.: Transparent carbon films as electrodes in organic solar cells. Angew. Chem. Int. Ed. 47(16), 2990–2992 (2008). doi:10.1002/anie.200704909

    Article  CAS  Google Scholar 

  3. Zhang, L., Cao, Y., Colella, N.S., Liang, Y., Brédas, J.-L., Houk, K.N., Briseno, A.L.: Unconventional, chemically stable, and soluble two-dimensional angular polycyclic aromatic hydrocarbons: from molecular design to device applications. Acc. Chem. Res. 48(3), 500–509 (2015). doi:10.1021/ar500278w

    Article  CAS  Google Scholar 

  4. Fu, M., Ehrat, F., Wang, Y., Milowska, K.Z., Reckmeier, C., Rogach, A.L., Stolarczyk, J.K., Urban, A.S., Feldmann, J.: Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett. 15(9), 6030–6035 (2015). doi:10.1021/acs.nanolett.5b02215

    Article  CAS  Google Scholar 

  5. Dichtel, W.R., Heath, J.R., Fraser Stoddart, J.: Designing bistable [2]rotaxanes for molecular electronic devices. Philos. Trans. R. Soc. A 365(1855), 1607–1625 (2007). doi:10.1098/rsta.2007.2034

    Article  CAS  Google Scholar 

  6. Zhang, Q., Peng, H., Zhang, G., Lu, Q., Chang, J., Dong, Y., Shi, X., Wei, J.: Facile bottom-up synthesis of coronene-based 3-fold symmetrical and highly substituted nanographenes from simple aromatics. J. Am. Chem. Soc. 136(13), 5057–5064 (2014). doi:10.1021/ja413018f

    Article  CAS  Google Scholar 

  7. Butterfield, A.M., Gilomen, B., Siegel, J.S.: Kilogram-Scale Production of Corannulene. Org. Process Res. Dev. 16(4), 664–676 (2012). doi:10.1021/op200387s

    Article  CAS  Google Scholar 

  8. Sun, L., Diaz-Fernandez, Y.A., Gschneidtner, T.A., Westerlund, F., Lara-Avila, S., Moth-Poulsen, K.: Single-molecule electronics: from chemical design to functional devices. Chem. Soc. Rev. 43(21), 7378–7411 (2014). doi:10.1039/C4CS00143E

    Article  CAS  Google Scholar 

  9. Island, J.O., Holovchenko, A., Koole, M., Alkemade, P.F.A., Menelaou, M., Aliaga-Alcalde, N., Burzur, E., Zant, H.S.J.v.d.: Fabrication of hybrid molecular devices using multi-layer graphene break junctions. J. Phys. Condens Matter 26(47), 474205 (2014)

    Google Scholar 

  10. Ito, S., Murashima, T., Ono, N., Uno, H.: A new synthesis of benzoporphyrins using 4,7-dihydro-4,7-ethano-2H-isoindole as a synthon of isoindole. Chem. Commun. 16, 1661–1662 (1998). doi:10.1039/A803656J

    Article  Google Scholar 

  11. Shea, P.B., Yamada, H., Ono, N., Kanicki, J.: Solution-processed zinc tetrabenzoporphyrin thin-films and transistors. Thin Solid Films 520(11), 4031–4035 (2012). doi:10.1016/j.tsf.2012.01.034

    Article  CAS  Google Scholar 

  12. Zhen, Y., Tanaka, H., Harano, K., Okada, S., Matsuo, Y., Nakamura, E.: Organic solid solution composed of two structurally similar porphyrins for organic solar cells. J. Am. Chem. Soc. 137(6), 2247–2252 (2015). doi:10.1021/ja513045a

    Article  CAS  Google Scholar 

  13. Uoyama, H., Yamada, H., Okujima, T., Uno, H.: Pentacene precursors for solution-processed OFETs. Tetrahedron 66(34), 6889–6894 (2010). doi:10.1016/j.tet.2010.06.051

    Article  CAS  Google Scholar 

  14. Akane, M., Yuko, Y., Shintetsu, G., Toshihiro, K., Hiroko, Y., Tetsuo, O., Noboru, O., Hidemitsu, U.: Organic thin-film transistor from a pentacene photoprecursor. Jpn. J. Appl. Phys. 48(5R), 051505 (2009)

    Google Scholar 

  15. Uoyama, H., Kim, K.S., Kuroki, K., Shin, J.-Y., Nagata, T., Okujima, T., Yamada, H., Ono, N., Kim, D., Uno, H.: Highly pure synthesis, spectral assignments, and two-photon properties of cruciform porphyrin pentamers fused with benzene units. Chems.–Eur. J. 16(13), 4063–4074 (2010). doi:10.1002/chem.200903196

    Article  CAS  Google Scholar 

  16. Tönshoff, C., Bettinger, H.F.: Photogeneration of octacene and nonacene. Angew. Chem. Int. Ed. 49(24), 4125–4128 (2010). doi:10.1002/anie.200906355

    Article  Google Scholar 

  17. Uno, H., Ito, S., Wada, M., Watanabe, H., Nagai, M., Hayashi, A., Murashima, T., Ono, N.: Synthesis and structures of pyrroles fused with rigid bicyclic ring systems at β-positions. J. Chem. Soc. Perkin Trans. 1(24), 4347–4355 (2000). doi:10.1039/B006584F

    Article  Google Scholar 

  18. Uoyama, H., Yamada, H., Okujima, T.: Synthesis of Bis-naphthoporphyrins. Heterocycles 86(1), 515–534 (2012)

    Article  CAS  Google Scholar 

  19. Uoyama, H., Chenxin, C., Tahara, H., Shimizu, Y., Hagiwara, H., Hanasaki, Y., Yamada, H., Okujima, T., Uno, H.: Thermal behavior of bicyclo [2.2.2] octadiene-installed precursors for 2H-anthra [2, 3-c] pyrroles and anthra [2, 3-c] thiophene. Heterocycles 80(2), 1187–1196 (2010)

    Article  CAS  Google Scholar 

  20. Uno, H., Hashimoto, M., Fujimoto, A.: Synthesis and properties of benzene-fused diporphyrins with various metals. Heterocycles 77(2), 887–898 (2009)

    Article  CAS  Google Scholar 

  21. Ito, S., Ochi, N., Uno, H., Murashima, T., Ono, N.: A new synthesis of [2, 3]naphthoporphyrins. Chem. Commun. 11, 893–894 (2000). doi:10.1039/B002213F

    Article  Google Scholar 

  22. Yamada, H., Kuzuhara, D., Takahashi, T., Shimizu, Y., Uota, K., Okujima, T., Uno, H., Ono, N.: Synthesis and characterization of tetraanthroporphyrins. Org. Lett. 10(14), 2947–2950 (2008). doi:10.1021/ol8008842

    Article  CAS  Google Scholar 

  23. Lash, T.D.: Porphyrin Synthesis by the “3 + 1” Approach: New Applications for an Old Methodology. Chem.—Eur. J. 2(10), 1197–1200 (1996). doi:10.1002/chem.19960021004

    Article  CAS  Google Scholar 

  24. Seidel, D., Lynch, V., Sessler, J.L.: Cyclo[8]pyrrole: a simple-to-make expanded porphyrin with no Meso Bridges. Angew. Chem. Int. Ed. 41(8), 1422–1425 (2002). doi:10.1002/1521-3773(20020415)41:8<1422:AID-ANIE1422>3.0.CO;2-O

    Article  CAS  Google Scholar 

  25. Yoon, Z.S., Kwon, J.H., Yoon, M.-C., Koh, M.K., Noh, S.B., Sessler, J.L., Lee, J.T., Seidel, D., Aguilar, A., Shimizu, S., Suzuki, M., Osuka, A., Kim, D.: Nonlinear optical properties and excited-state dynamics of highly symmetric expanded porphyrins. J. Am. Chem. Soc. 128(43), 14128–14134 (2006). doi:10.1021/ja064773k

    Article  CAS  Google Scholar 

  26. Eller, L.R., Stȩpień, M., Fowler, C.J., Lee, J.T., Sessler, J.L., Moyer, B.A.: Octamethyl-octaundecylcyclo[8]pyrrole: a promising sulfate anion extractant. J. Am. Chem. Soc. 129(36), 11020–11021 (2007). doi:10.1021/ja074568k

    Article  CAS  Google Scholar 

  27. Sessler, J.L., Karnas, E., Kim, S.K., Ou, Z., Zhang, M., Kadish, K.M., Ohkubo, K., Fukuzumi, S.: “Umpolung” photoinduced charge separation in an anion-bound supramolecular complex. J. Am. Chem. Soc. 130(46), 15256–15257 (2008). doi:10.1021/ja806813x

    Article  CAS  Google Scholar 

  28. Stępień, M., Donnio, B., Sessler, J.L.: Supramolecular liquid crystals based on Cyclo[8]pyrrole. Angew. Chem. Int. Ed. 46(9), 1431–1435 (2007). doi:10.1002/anie.200603893

    Article  Google Scholar 

  29. Gorski, A., Köhler, T., Seidel, D., Lee, J.T., Orzanowska, G., Sessler, J.L., Waluk, J.: Electronic structure, spectra, and magnetic circular dichroism of cyclohexa-, cyclohepta-, and cyclooctapyrrole. Chem.—Eur. J. 11(14), 4179–4184 (2005). doi:10.1002/chem.200401343

    Article  CAS  Google Scholar 

  30. Alkorta, I., Blanco, F., Elguero, J.: A theoretical study of the neutral and the double-charged cation of cyclo[8]pyrrole and its interaction with inorganic anions. Cent. Eur. J. Chem. 7(4), 683–689 (2009). doi:10.2478/s11532-009-0090-3

    CAS  Google Scholar 

  31. Sessler, J.L., Seidel, D.: Synthetic expanded porphyrin chemistry. Angew. Chem. Int. Ed. 42(42), 5134–5175 (2003). doi:10.1002/anie.200200561

    Article  CAS  Google Scholar 

  32. Rambo, B.M., Sessler, J.L.: Oligopyrrole macrocycles: receptors and chemosensors for potentially hazardous materials. Chem.—Eur. J. 17(18), 4946–4959 (2011). doi:10.1002/chem.201100050

    Article  CAS  Google Scholar 

  33. Roznyatovskiy, V.V., Lee, C.-H., Sessler, J.L.: [small pi]-Extended isomeric and expanded porphyrins. Chem. Soc. Rev. 42(5), 1921–1933 (2013). doi:10.1039/C2CS35418G

    Article  CAS  Google Scholar 

  34. Okujima, T., **, G., Matsumoto, N., Mack, J., Mori, S., Ohara, K., Kuzuhara, D., Ando, C., Ono, N., Yamada, H., Uno, H., Kobayashi, N.: Cyclo[8]isoindoles: ring-expanded and annelated porphyrinoids. Angew. Chem. Int. Ed. 50(25), 5699–5703 (2011). doi:10.1002/anie.201007510

    Article  CAS  Google Scholar 

  35. Roznyatovskiy, V.V., Lim, J.M., Lynch, V.M., Lee, B.S., Kim, D., Sessler, J.L.: π-Extension in expanded porphyrins: Cyclo[4]naphthobipyrrole. Org. Lett. 13(20), 5620–5623 (2011). doi:10.1021/ol2023449

    Article  CAS  Google Scholar 

  36. Sarma, T., Panda, P.K.: Cyclo[4]naphthobipyrroles: naphthobipyrrole-derived Cyclo[8]pyrroles with strong near-infrared absorptions. Chem.—Eur. J. 17(50), 13987–13991 (2011). doi:10.1002/chem.201102486

    Article  CAS  Google Scholar 

  37. Okujima, T., Ando, C., Mack, J., Mori, S., Hisaki, I., Nakae, T., Yamada, H., Ohara, K., Kobayashi, N., Uno, H.: Acenaphthylene-fused Cyclo[8]pyrroles with Intense near-IR-region absorption bands. Chem.—Eur J. 19(41), 13970–13978 (2013). doi:10.1002/chem.201301294

    Article  CAS  Google Scholar 

  38. Okujima, T., Ando, C., Mori, S.: Synthesis and molecular structure of cyclo [8](9, 10-DIHYDRO-9, 10-ANTHRACENO) PYRROLE (Dedicated to Professor Victor Snieckus on the occasion of his 77th birthday). Heterocycles 88(1), 417–424 (2014)

    Article  CAS  Google Scholar 

  39. Köhler, T., Seidel, D., Lynch, V., Arp, F.O., Ou, Z., Kadish, K.M., Sessler, J.L.: Formation and properties of Cyclo[6]pyrrole and Cyclo[7]pyrrole. J. Am. Chem. Soc. 125(23), 6872–6873 (2003). doi:10.1021/ja035089y

    Article  Google Scholar 

  40. Zhang, Z., Lim, J.M., Ishida, M., Roznyatovskiy, V.V., Lynch, V.M., Gong, H.-Y., Yang, X., Kim, D., Sessler, J.L.: Cyclo[m]pyridine[n]pyrroles: hybrid macrocycles that display expanded π-conjugation upon protonation. J. Am. Chem. Soc. 134(9), 4076–4079 (2012). doi:10.1021/ja211985k

    Article  CAS  Google Scholar 

  41. Ho, I.T., Zhang, Z., Ishida, M., Lynch, V.M., Cha, W.-Y., Sung, Y.M., Kim, D., Sessler, J.L.: A hybrid macrocycle with a pyridine subunit displays aromatic character upon uranyl cation complexation. J. Am. Chem. Soc. 136(11), 4281–4286 (2014). doi:10.1021/ja412520g

    Article  CAS  Google Scholar 

  42. Bui, T.-T., Iordache, A., Chen, Z., Roznyatovskiy, V.V., Saint-Aman, E., Lim, J.M., Lee, B.S., Ghosh, S., Moutet, J.-C., Sessler, J.L., Kim, D., Bucher, C.: Electrochemical synthesis of a thiophene-containing Cyclo[9]pyrrole. Chem.—Eur. J. 18(19), 5853–5859 (2012). doi:10.1002/chem.201200196

    Article  CAS  Google Scholar 

  43. Okujima, T., et al.: To be published

    Google Scholar 

  44. Chen, F., Tao, N.J.: Electron transport in single molecules: from benzene to graphene. Acc. Chem. Res. 42(3), 429–438 (2009). doi:10.1021/ar800199a

    Article  CAS  Google Scholar 

  45. Narita, A., Wang, X.-Y., Feng, X., Mullen, K.: New advances in nanographene chemistry. Chem. Soc. Rev. 44(18), 6616–6643 (2015). doi:10.1039/C5CS00183H

    Article  CAS  Google Scholar 

  46. Mauser, H., Hirsch, A., Hommes, N.J.R.E., Clark, T.: Chemistry of convex versus concave carbon: the reactive exterior and the inert interior of C60. J. Mol. Model. 3(10), 415–422 (1997). doi:10.1007/s008940050059

    Article  CAS  Google Scholar 

  47. Granda, M., Blanco, C., Alvarez, P., Patrick, J.W., Menéndez, R.: Chemicals from coal coking. Chem. Rev. 114(3), 1608–1636 (2014). doi:10.1021/cr400256y

    Article  CAS  Google Scholar 

  48. Transition-Metal-Mediated Aromatic Ring Construction. Wiley (2013). doi:10.1002/9781118629871

  49. Bendikov, M., Wudl, F., Perepichka, D.F.: Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. Chem. Rev. 104(11), 4891–4946 (2004). doi:10.1021/cr030666m

    Article  CAS  Google Scholar 

  50. Okamoto, H., Eguchi, R., Hamao, S., Goto, H., Gotoh, K., Sakai, Y., Izumi, M., Takaguchi, Y., Gohda, S., Kubozono, Y.: An extended phenacene-type molecule, [8]Phenacene: synthesis and transistor application. Sci. Rep. 4, 5330 (2014). doi:10.1038/srep05330

    Article  CAS  Google Scholar 

  51. Mitsuhashi, R., Suzuki, Y., Yamanari, Y., Mitamura, H., Kambe, T., Ikeda, N., Okamoto, H., Fujiwara, A., Yamaji, M., Kawasaki, N., Maniwa, Y., Kubozono, Y.: Superconductivity in alkali-metal-doped picene. Nature 464(7285), 76–79 (2010). doi:10.1038/nature08859

    Article  CAS  Google Scholar 

  52. Mallory, F.B., Mallory, C.W.: Photocyclization of Stilbenes and Related Molecules. Organic Reactions Wiley (2004). doi:10.1002/0471264180.or030.01

  53. Schmidt, J., Ladner, G.: Ueber das 3-Bromphenanthrenchinon und seine Abkömmlinge. Ber. Dtsch. Chem. Ges. 37(3), 3571–3572 (1904). doi:10.1002/cber.190403703189

    Article  CAS  Google Scholar 

  54. Henstockm, H.: CCCLXV.-The bromine compounds of pheranthrene. Part II. J. Chem. Soc. Trans. 123 (0), 3097–3099 (1923). doi:10.1039/CT9232303097

  55. Bowden, B., Read, R., Ritchie, E., Taylor, W.: Synthesis of 9,10-dihydrophenanthrenes including orchinol methyl ether. Aust. J. Chem. 28(1), 65–80 (1975). doi:10.1071/Ch9750065

    Article  CAS  Google Scholar 

  56. Khorev, O., Bosch, C.D., Probst, M., Haner, R.: Observation of the rare chrysene excimer. Chem. Sci. 5(4), 1506–1512 (2014). doi:10.1039/C3SC53316F

    Article  CAS  Google Scholar 

  57. Bock, H., Huet, S., Dechambenoit, P., Hillard, E.A., Durola, F.: From chrysene to double [5]Helicenes. Eur. J. Org. Chem. 2015(5), 1033–1039 (2015). doi:10.1002/ejoc.201403341

  58. Ionkin, A.S., Marshall, W.J., Fish, B.M., Bryman, L.M., Wang, Y.: A tetra-substituted chrysene: orientation of multiple electrophilic substitution and use of a tetra-substituted chrysene as a blue emitter for OLEDs. Chem. Commun. 20, 2319–2321 (2008). doi:10.1039/B715386D

    Article  Google Scholar 

  59. Isobe, H., Hitosugi, S., Matsuno, T., Iwamoto, T., Ichikawa, J.: Concise synthesis of halogenated chrysenes ([4]Phenacenes) that favor π-stack packing in single crystals. Org. Lett. 11(17), 4026–4028 (2009). doi:10.1021/ol901693y

    Article  CAS  Google Scholar 

  60. Okamoto, H., Yamaji, M., Gohda, S., Kubozono, Y., Komura, N., Sato, K., Sugino, H., Satake, K.: Facile synthesis of picene from 1,2-Di(1-naphthyl)ethane by 9-Fluorenone-sensitized photolysis. Org. Lett. 13(10), 2758–2761 (2011). doi:10.1021/ol200874q

    Article  CAS  Google Scholar 

  61. Okamoto, H., Takane, T., Gohda, S., Kubozono, Y., Sato, K., Yamaji, M., Satake, K.: Efficient synthetic photocyclization for phenacenes using a continuous flow reactor. Chem. Lett. 43(7), 994–996 (2014). doi:10.1246/cl.140182

    Article  CAS  Google Scholar 

  62. Okamoto, H., Hamao, S., Goto, H., Sakai, Y., Izumi, M., Gohda, S., Kubozono, Y., Eguchi, R.: Transistor application of alkyl-substituted picene. Sci. Rep. 4, 5048 (2014). doi:10.1038/srep05048

    Article  CAS  Google Scholar 

  63. Hitosugi, S., Nakamura, Y., Matsuno, T., Nakanishi, W., Isobe, H.: Iridium-catalyzed direct borylation of phenacenes. Tetrahedron Lett. 53(9), 1180–1182 (2012). doi:10.1016/j.tetlet.2011.12.106

    Article  CAS  Google Scholar 

  64. Some, S., Dutta, B., Ray, J.K.: Synthesis of substituted benzene derivatives by homo- and hetero-coupling of 2-bromobenzaldehyde and bromovinylaldehydes followed by McMurry coupling. Tetrahedron Lett. 47(7), 1221–1224 (2006). doi:10.1016/j.tetlet.2005.11.146

    Article  CAS  Google Scholar 

  65. **a, Y., Liu, Z., **ao, Q., Qu, P., Ge, R., Zhang, Y., Wang, J.: Rhodium(II)-Catalyzed cyclization of Bis(N-tosylhydrazone)s: an efficient approach towards polycyclic aromatic compounds. Angew. Chem. Int. Ed. 51(23), 5714–5717 (2012). doi:10.1002/anie.201201374

    Article  CAS  Google Scholar 

  66. Chang, N.-H., Chen, X.-C., Nonobe, H., Okuda, Y., Mori, H., Nakajima, K., Nishihara, Y.: Synthesis of substituted picenes through pd-catalyzed cross-coupling reaction/annulation sequences and their physicochemical properties. Org. Lett. 15(14), 3558–3561 (2013). doi:10.1021/ol401375n

    Article  Google Scholar 

  67. Keay, B.A.: Product subclass 33: arylsilanes. Sci. Synth. 4, 685–712 (2002)

    CAS  Google Scholar 

  68. Nakae, T., Ohnishi, R., Kitahata, Y., Soukawa, T., Sato, H., Mori, S., Okujima, T., Uno, H., Sakaguchi, H.: Effective synthesis of diiodinated picene and dibenzo[a,h]anthracene by AuCl-catalyzed double cyclization. Tetrahedron Lett. 53(13), 1617–1619 (2012). doi:10.1016/j.tetlet.2012.01.071

    Article  CAS  Google Scholar 

  69. Mamane, V., Hannen, P., Fürstner, A.: Synthesis of phenanthrenes and polycyclic heteroarenes by transition-metal catalyzed cycloisomerization reactions. Chem.—Eur. J. 10(18), 4556–4575 (2004). doi:10.1002/chem.200400220

    Article  CAS  Google Scholar 

  70. Okamoto, H., Yamaji, M., Gohda, S., Sato, K., Sugino, H., Satake, K.: Photochemical synthesis and electronic spectra of fulminene ([6]phenacene). Res. Chem. Intermed. 39(1), 147–159 (2013). doi:10.1007/s11164-012-0639-1

    Article  CAS  Google Scholar 

  71. Mallory, F.B., Butler, K.E., Evans, A.C., Mallory, C.W.: Phenacenes: A family of graphite ribbons. 1. Syntheses of some [7]phenacenes by stilbene-like photocyclizations. Tetrahedron Lett. 37(40), 7173–7176 (1996). doi:10.1016/0040-4039(96)01618-8

    Article  CAS  Google Scholar 

  72. Murai, M., Maekawa, H., Hamao, S., Kubozono, Y., Roy, D., Takai, K.: Transition-metal-catalyzed facile access to 3,11-Dialkylfulminenes for transistor applications. Org. Lett. 17(3), 708–711 (2015). doi:10.1021/ol503723j

    Article  CAS  Google Scholar 

  73. Roy, D., Maekawa, H., Murai, M., Takai, K.: Short synthesis of [5]- and [7]Phenacenes with silyl groups at the axis positions. Chem.—Asian J. 10(11), 2518–2524 (2015). doi:10.1002/asia.201500700

    Article  CAS  Google Scholar 

  74. Nakae, T., et al.: To be published

    Google Scholar 

  75. Nakae, T., et al.: To be published

    Google Scholar 

  76. Mori, K., Murase, T., Fujita, M.: One-step synthesis of [16]Helicene. Angew. Chem. Int. Ed. 54(23), 6847–6851 (2015). doi:10.1002/anie.201502436

    Article  CAS  Google Scholar 

  77. Zeller, K.P.: Azulene in Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme, Stuttgart, vo l. 5, Part 2C, pp. 127–418, 4th ed. (1985)

    Google Scholar 

  78. Fukazawa, Y., Aoyagi, M., Itô, S.: Naphtho[1,8-ab:4,5-a‘b’]diazulene, the first nonalternant isomer of dibenzopyrene. Tetrahedron Lett. 22(39), 3879–3882 (1981). doi:10.1016/s0040-4039(01)91334-6

    Article  CAS  Google Scholar 

  79. Morita, T., Takase, K.: Synthesis of 1,1’-, 2,2’-, 1,2’-, and 2,6’-Biazulenes and their derivatives by ullmann reaction. Bull. Chem. Soc. Jpn. 55(4), 1144–1152 (1982). doi:10.1246/bcsj.55.1144

    Article  CAS  Google Scholar 

  80. Porsch, M., Sigl-Seifert, G., Daub, J.: Polyazulenes and Polybiazulenes: chiroptical switching and electron transfer properties of structurally segmented systems. Adv. Mater. 9(8), 635–639 (1997). doi:10.1002/adma.19970090809

    Article  CAS  Google Scholar 

  81. Kurotobi, K., Tabata, H., Miyauchi, M., Murafuji, T.: Sugihara Y (2002) Coupling Reaction of Azulenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolanes with Haloazulenes. Synthesis 08, 1013–1016 (2002). doi:10.1055/s-2002-31947

    Article  Google Scholar 

  82. Ito, S., Terazono, T., Kubo, T., Okujima, T., Morita, N., Murafuji, T., Sugihara, Y., Fujimori, K., Kawakami, J., Tajiri, A.: Efficient preparation of 2-azulenylboronate and Miyaura-Suzuki cross-coupling reaction with aryl bromides for easy access to poly(2-azulenyl)benzenes. Tetrahedron 60(25), 5357–5366 (2004). doi:10.1016/j.tet.2004.04.057

    Article  CAS  Google Scholar 

  83. Thanh, N.C., Ikai, M., Kajioka, T., Fujikawa, H., Taga, Y., Zhang, Y., Ogawa, S., Shimada, H., Miyahara, Y., Kuroda, S., Oda, M.: Synthesis of N,N,N’,N’-tetrasubstituted 1,3-bis(4-aminophenyl)azulenes and their application to a hole-injecting material in organic electroluminescent devices. Tetrahedron 62(48), 11227–11239 (2006). doi:10.1016/j.tet.2006.09.025

    Article  CAS  Google Scholar 

  84. Ito, S., Okujima, T., Morita, N.: Preparation and stille cross-coupling reaction of the first organotin reagents of azulenes. Easy access to poly(azulen-6-yl)benzene derivatives. J. Chem. Soc. Perkin Trans. 1(16), 1896–1905 (2002). doi:10.1039/B203836F

  85. Okujima, T., Ito, S., Morita, N.: Preparation and Stille cross-coupling reaction of the first organotin reagents of azulenes. An efficient Pd(0)-catalyzed synthesis of 6-aryl- and biazulenes. Tetrahedron Lett. 43(7), 1261–1264 (2002). doi:10.1016/S0040-4039(01)02347-4

    Article  CAS  Google Scholar 

  86. Ito, S., Kubo, T., Morita, N., Matsui, Y., Watanabe, T., Ohta, A., Fujimori, K., Murafuji, T., Sugihara, Y., Tajiri, A.: Preparation of azulenyllithium and magnesium reagents utilizing halogen–metal exchange reaction of several iodoazulenes with organolithium or magnesium ate complex. Tetrahedron Lett. 45(14), 2891–2894 (2004). doi:10.1016/j.tetlet.2004.02.059

    Article  CAS  Google Scholar 

  87. Shibasaki, T., Ooishi, T., Yamanouchi, N., Murafuji, T., Kurotobi, K., Sugihara, Y.: A New efficient route to 2-substituted Azulenes based on Sulfonyl group directed Lithiation§. J. Org. Chem. 73(20), 7971–7977 (2008). doi:10.1021/jo801166f

    Article  CAS  Google Scholar 

  88. Nakae, T., Kikuchi, T., Mori, S., Okujima, T., Murafuji, T., Uno, H.: Bisarylation of 1, 1’, 3, 3’-Tetrahalo-2, 2’-biazulene under Suzuki-Miyaura cross-coupling conditions. Chem. Lett. 43(4), 504–506 (2014). doi:10.1246/cl.131142

    Article  CAS  Google Scholar 

  89. Nakae, T., et al.: To be published

    Google Scholar 

  90. Gabioud, R., Vogel, P.: The 7,8-epoxy-2, 3, 5, 6-tetrakis(methylene) bicyclo[2.2.2]octane; synthesis and diels-alder reactivity. Tetrahedron 36(1), 149–154 (1980). doi:10.1016/0040-4020(80)85037-x

    Article  CAS  Google Scholar 

  91. Uno, H., Nakamoto, K.-i., Kuroki, K., Fujimoto, A., Ono, N.: Synthesis of porphyrin dimers fused with a benzene unit. Chem.-Eur. J. 13(20), 5773–5784 (2007). doi:10.1002/chem.200601644

    Article  CAS  Google Scholar 

  92. Mori, S., et al.: To be published

    Google Scholar 

  93. Yamada, R., Kumazawa, H., Noutoshi, T., Tanaka, S., Tada, H.: Electrical conductance of oligothiophene molecular wires. Nano Lett. 8(4), 1237–1240 (2008). doi:10.1021/nl0732023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Architectonics: Orchestration of Single Molecules for Novel Functions” (25110003) from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidemitsu Uno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Uno, H., Nakae, T., Okujima, T., Mori, S. (2017). Synthesis of Rigid π Organic Molecular Architectures and Their Applications in Single-Molecule Measurement. In: Ogawa, T. (eds) Molecular Architectonics. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-57096-9_18

Download citation

Publish with us

Policies and ethics

Navigation